Separation of gas and dust in the winds of AGB stars

2018 ◽  
Vol 14 (S343) ◽  
pp. 462-463
Author(s):  
Lars Mattsson ◽  
Christer Sandin ◽  
Paolo Ventura

AbstractWe present first results from a project aiming at a better understanding of how gas and dust interact in dust-driven winds from Asymptotic Giant Branch (AGB) stars. We are at the final stage of developing a new parallelised radiation-hydrodynamics (RHD) code for AGB-wind modelling including a new generalised implementation of drift. We also discuss first results from high-resolution box simulations of forced turbulence intended to give quantitative “3D corrections” to dust-driven winds from AGB stars. It is argued that modelling of dust-driven winds of AGB stars is a problem that may need to be treated in a less holistic way, where some parts of the problem are treated separately in detailed simulations and are parameterised back into a less detailed (1D spherically symmetric) model describing the entire picture.

2018 ◽  
Vol 14 (S343) ◽  
pp. 9-18
Author(s):  
Bernd Freytag ◽  
Susanne Höfner ◽  
Sofie Liljegren

AbstractLocal three-dimensional radiation-hydrodynamics simulations of patches of the surfaces of solar-type stars, that are governed by small-scale granular convection, have helped analyzing and interpreting observations for decades. These models contributed considerably to the understanding of the atmospheres and indirectly also of the interiors and the active layers above the surface of these stars. Of great help was of course the availability of a close-by prototype of these stars – the sun.In the case of an asymptotic-giant-branch (AGB) star, the convective cells have sizes comparable to the radius of the giant. Therefore, the extensions of the solar-type-star simulations to AGB stars have to be global and cover the entire object, including a large part of the convection zone, the molecule-formation layers in the inner atmosphere, and the dust-formation region in the outer atmosphere. Three-dimensional radiation-hydrodynamics simulations with CO5BOLD show how the interplay of large and small convection cells, waves, pulsations, and shocks, but also molecular and dust opacities of AGB stars create conditions very different from those in the solar atmosphere.Recent CO5BOLD models account for frequency-dependent radiation transport and the formation of two independent dust species for an oxygen-rich composition. The drop of the comparably smooth temperature distribution below a threshold determines to onset of dust formation, further in, at higher temperatures, for aluminium oxides (Al2O3) than for silicates (Mg2SiO4). An uneven dust distribution is mostly caused by inhomogeneities in the density of the shocked gas.


2012 ◽  
Vol 27 (40) ◽  
pp. 1250231 ◽  
Author(s):  
HÜSNÜ BAYSAL

We have calculated the total energy–momentum distribution associated with (n+2)-dimensional spherically symmetric model of the universe by using the Møller energy–momentum definition in general relativity (GR). We have found that components of Møller energy and momentum tensor for given spacetimes are different from zero. Also, we are able to get energy and momentum density of various well-known wormholes and black hole models by using the (n+2)-dimensional spherically symmetric metric. Also, our results have been discussed and compared with the results for four-dimensional spacetimes in literature.


2019 ◽  
Vol 621 ◽  
pp. A50 ◽  
Author(s):  
M. Brunner ◽  
M. Mecina ◽  
M. Maercker ◽  
E. A. Dorfi ◽  
F. Kerschbaum ◽  
...  

Aims. The carbon-rich asymptotic giant branch (AGB) star TX Piscium (TX Psc) has been observed multiple times during multiple epochs and at different wavelengths and resolutions, showing a complex molecular CO line profile and a ring-like structure in thermal dust emission. We investigate the molecular counterpart in high resolution, aiming to resolve the ring-like structure and identify its origin. Methods. Atacama Large Millimeter/submillimeter Array (ALMA) observations have been carried out to map the circumstellar envelope (CSE) of TX Psc in CO(2–1) emission and investigate the counterpart to the ring-like dust structure. Results. We report the detection of a thin, irregular, and elliptical detached molecular shell around TX Psc, which coincides with the dust emission. This is the first discovery of a non-spherically symmetric detached shell, raising questions about the shaping of detached shells. Conclusions. We investigate possible shaping mechanisms for elliptical detached shells and find that in the case of TX Psc, stellar rotation of 2 km s−1 can lead to a non-uniform mass-loss rate and velocity distribution from stellar pole to equator, recreating the elliptical CSE. We discuss the possible scenarios for increased stellar momentum, enabling the rotation rates needed to reproduce the ellipticity of our observations, and come to the conclusion that momentum transfer of an orbiting object with the mass of a brown dwarf would be sufficient.


1998 ◽  
Vol 57 (10) ◽  
pp. 6094-6103 ◽  
Author(s):  
Masaaki Morita ◽  
Kouji Nakamura ◽  
Masumi Kasai

2009 ◽  
Vol 5 (S262) ◽  
pp. 36-43 ◽  
Author(s):  
Paola Marigo ◽  
Léo Girardi ◽  
Alessandro Bressan ◽  
Bernhard Aringer ◽  
Marco Gullieuszik ◽  
...  

AbstractIn spite of its relevance, the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase is one of the most uncertain phases of stellar evolution, and a major source of disagreement between the results of different population synthesis models of galaxies. I will briefly review the existing literature on the subject, and recall the basic prescriptions that have been used to fix the contribution of TP-AGB stars to the integrated light of stellar populations. The simplicity of these prescriptions greatly contrasts with the richness of details provided by present-day databases of AGB stars in the Magellanic Clouds, which are now being extended to other nearby galaxies. I will present the first results of an ongoing study aimed at simulating photometry, chemistry, pulsation, mass loss, dust properties of AGB star populations in resolved and un-resolved galaxies. We test our predictions against observations from various surveys of the Magellanic Clouds (DENIS, 2MASS, OGLE, MACHO, Spitzer, and AKARI). I will discuss the implications and outline the plan of future developments.


2012 ◽  
Vol 8 (S287) ◽  
pp. 245-249
Author(s):  
W. Cotton ◽  
G. Perrin ◽  
R. Millan-Gabet ◽  
O. Delaa ◽  
B. Mennesson

AbstractAsymptotic Giant Branch Stars (AGB) are evolved, mass losing red giants with tenuous molecular envelopes which have been the subject of much recent study using infrared and radio interferometers. In oxygen rich stars, radio SiO masers form in the outer regions of the molecular envelopes and are powerful diagnostics of the extent of these envelopes. Spectroscopically resolved infrared interferometry helps constrain the extent of various species in the molecular layer. We made VLBA 7 mm SiO maser, Keck Interferometer near IR and VLTI/MIDI mid IR high resolution observations of the stars U Ari, W Cnc, RX Tau, RT Aql, S Ser and V Mon. This paper presents evidence that the SiO is depleted from the gas phase and speculate that it is frozen onto Al2O3 grains and that radiation pressure on these grains help drive the outflow.


Sign in / Sign up

Export Citation Format

Share Document