scholarly journals A review of spectral energy distribution modeling at high-redshift

2019 ◽  
Vol 15 (S352) ◽  
pp. 77-77
Author(s):  
Stéphane Charlot

AbstractI will review recent developments in the modeling of high-redshift galaxy spectra, focusing in particular on the rest-frame ultraviolet and optical emission from young stellar populations and the interstellar medium.

2019 ◽  
Vol 621 ◽  
pp. A82 ◽  
Author(s):  
S. Vercellone ◽  
P. Romano ◽  
G. Piano ◽  
V. Vittorini ◽  
I. Donnarumma ◽  
...  

Context. The flat-spectrum radio quasar 4C +71.07 is a high-redshift (z = 2.172), γ-loud blazar whose optical emission is dominated by thermal radiation from the accretion disc. Aims. 4C +71.07 has been detected in outburst twice by the AGILE γ-ray satellite during the period from the end of October to mid-November 2015, when it reached a γ-ray flux of the order of F(E >  100 MeV)=(1.2 ± 0.3)×10−6 photons cm−2 s−1 and F(E > 100 MeV)=(3.1 ± 0.6)×10−6 photons cm−2 s−1, respectively, allowing us to investigate the properties of the jet and the emission region. Methods. We investigated its spectral energy distribution by means of almost-simultaneous observations covering the cm, mm, near-infrared, optical, ultraviolet, X-ray, and γ-ray energy bands obtained by the GASP-WEBT Consortium and the Swift, AGILE, and Fermi satellites. Results. The spectral energy distribution of the second γ-ray flare (whose energy coverage is more dense) can be modelled by means of a one-zone leptonic model, yielding a total jet power of about 4 × 1047 erg s−1. Conclusions. During the most prominent γ-ray flaring period our model is consistent with a dissipation region within the broad-line region. Moreover, this class of high-redshift, flat-spectrum radio quasars with high-mass black holes might be good targets for future γ-ray satellites such as e-ASTROGAM.


2021 ◽  
Vol 21 (10) ◽  
pp. 260
Author(s):  
Cheng Cheng ◽  
Jia-Sheng Huang ◽  
Hai Xu ◽  
Gao-Xiang Jin ◽  
Chuan He ◽  
...  

Abstract The Spitzer Extended Deep Survey (SEDS) as a deep and wide mid-infrared (MIR) survey project provides a sample of 500 000+ sources spreading 1.46 square degree and a depth of 26 AB mag (3σ). Combining with the previous available data, we build a PSF-matched multi-wavelength photometry catalog from u band to 8 μm. We fit the SEDS galaxies spectral energy distributions by the local galaxy templates. The results show that the SEDS galaxy can be fitted well, indicating the high redshift galaxy (z ∼ 1) shares the same templates with the local galaxies. This study would facilitate the further study of the galaxy luminosity and high redshift mass function.


2019 ◽  
Vol 15 (S352) ◽  
pp. 194-198
Author(s):  
Christina C. Williams

AbstractWe discuss the serendipitous discovery of a dusty high-redshift galaxy in a small (8 arcmin2) ALMA 3-mm survey Williams et al. (2019). The galaxy was previously unknown and is absent from existing multi-wavelength catalogs (“ALMA-only”). Using the ALMA position as prior, we perform forced deblended photometry to constrain its spectral energy distribution. The spectral energy distribution is well described by a massive (M* = 1010.8 M⊙) and highly obscured (AV ∼ 4) galaxy at redshift z = 5.5 ± 1.1 with star formation rate ∼ 300 M⊙yr−1. Our small survey area implies an uncertain but large contribution to the cosmic star formation rate density, similar to the contribution from all ultraviolet-selected galaxies combined at this redshift. This galaxy likely traces an abundant population of massive galaxies absent from current samples of infrared-selected or sub-millimeter galaxies, but with larger space densities, higher duty cycles, and significant contribution to the cosmic star-formation rate and stellar mass densities.


2014 ◽  
Vol 797 (2) ◽  
pp. 111 ◽  
Author(s):  
K. L. Li ◽  
A. K. H. Kong ◽  
J. Takata ◽  
K. S. Cheng ◽  
P. H. T. Tam ◽  
...  

2019 ◽  
Vol 621 ◽  
pp. A139 ◽  
Author(s):  
K. Tisanić ◽  
V. Smolčić ◽  
J. Delhaize ◽  
M. Novak ◽  
H. Intema ◽  
...  

We construct the average radio spectral energy distribution (SED) of highly star-forming galaxies (HSFGs) up to z ∼ 4. Infrared and radio luminosities are bound by a tight correlation that is defined by the so-called q parameter. This infrared–radio correlation provides the basis for the use of radio luminosity as a star-formation tracer. Recent stacking and survival analysis studies find q to be decreasing with increasing redshift. It was pointed out that a possible cause of the redshift trend could be the computation of rest-frame radio luminosity via a single power-law assumption of the star-forming galaxies’ (SFGs) SED. To test this, we constrained the shape of the radio SED of a sample of HSFGs. To achieve a broad rest-frame frequency range, we combined previously published Very Large Array observations of the COSMOS field at 1.4 GHz and 3 GHz with unpublished Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz and 610 MHz by employing survival analysis to account for non-detections in the GMRT maps. We selected a sample of HSFGs in a broad redshift range (z ∈ [0.3, 4],  SFR ≥ 100 M⊙ yr−1) and constructed the average radio SED. By fitting a broken power-law, we find that the spectral index changes from α1 = 0.42 ± 0.06 below a rest-frame frequency of 4.3 GHz to α2 = 0.94 ± 0.06 above 4.3 GHz. Our results are in line with previous low-redshift studies of HSFGs ( SFR >  10 M⊙  yr−1) that show the SED of HSFGs to differ from the SED found for normal SFGs ( SFR <  10 M⊙ yr−1). The difference is mainly in a steeper spectrum around 10 GHz, which could indicate a smaller fraction of thermal free–free emission. Finally, we also discuss the impact of applying this broken power-law SED in place of a simple power-law in K-corrections of HSFGs and a typical radio SED for normal SFGs drawn from the literature. We find that the shape of the radio SED is unlikely to be the root cause of the q − z trend in SFGs.


2009 ◽  
Vol 137 (6) ◽  
pp. 4854-4866 ◽  
Author(s):  
J. Melbourne ◽  
R. S. Bussman ◽  
K. Brand ◽  
V. Desai ◽  
L. Armus ◽  
...  

1992 ◽  
Vol 9 ◽  
pp. 693-694
Author(s):  
Esther M. Hu

AbstractLyman a companions to high-redshift quasars appear associated with radio activity in the quasar. Of the five known companion systems seen at typical Lα fluxes of a few x 10-16 ergs cm-2 sec-1, all are associated with quasars which are radio sources, and lie within a few arcseconds of the quasar. We summarize results of searches for the companions, and report on subsequent investigations into the spectral energy distribution and radio studies of these objects. Multi-color imaging from 3400 Å to 2.2/μ shows the companion to PKS 1614+051 possesses a blue SED similar to an irregular at that redshift. VLA observations show double-lobed structure around Q1033+137 with depolarization of the counterjet lobe.


2020 ◽  
Vol 635 ◽  
pp. A25 ◽  
Author(s):  
N. Sahakyan

The flat spectrum radio quasar CTA 102 entered an extended period of activity from 2016 to 2017 during which several strong γ-ray flares were observed. By using Fermi large area telescope data, a detailed investigation of γ-ray spectra of CTA 102 during the flaring period was performed. In several periods, the γ-ray spectrum is not consistent with a simple power-law, having a hard photon index with an index of ∼(1.8−2.0) that shows a spectral cut-off around an observed photon energy of ∼(9−16) GeV. The internal γ-ray absorption via photon-photon pair production on the broad-line-region-reflected photons cannot account for the observed cut-off and break even if the emitting region is very close to the central source. This cut-off and break are likely due to a similar intrinsic break in the energy distribution of emitting particles. The origin of the spectral break is investigated through the multiwavelength modeling of the spectral energy distribution in considering a different location for the emitting region. The observed X-ray and γ-ray data is modeled as inverse Compton scattering of synchrotron and/or external photons on the electron population that produces the radio-to-optical emission, which allowed to constrain the power-law index and cut-off energy in the electron energy distribution. The obtained results are discussed in the context of a diffusive acceleration of electrons in the CTA 102 jet.


Sign in / Sign up

Export Citation Format

Share Document