scholarly journals Resolving on 100 pc-scales the UV-continuum in Lyman-emitters between redshift 2 to 3 with gravitational lensing

2019 ◽  
Vol 15 (S352) ◽  
pp. 280-280
Author(s):  
Elisa Ritondale

AbstractLyman-alpha emitting (LAE) galaxies are thought to be predominantly responsible for the re-ionisation of the Universe and are, as such, one of the most studied star-forming galaxy populations. Current optical and narrow-band studies are limited by the angular resolution of the observations and the considerable investment in telescope time. Strong gravitational lensing is an extremely powerful method that can be used to overcome these limitations. In my talk I will present a study on the first homogeneous sample of 17 lensed Lyman-alpha emitters at redshift 2 < z < 3. By taking advantage of the lensing magnification, I was able to access the detailed structure of this high redshift star-forming galaxies, finding that they have radii ranging from 0.2 to 1.8 kpc and have a complex and clumpy morphology, with a median ellipticity of 0.49. This is consistent with disk-like structures of star-formation, which would rule out models where the Lyman-alpha emission is only seen perpendicular to the disk, and favours those clumpy models for the escape lines of sight for Lyman-alpha photons. We also find that the star formation rates range from 0.3 to 8.5 Mȯ/yr and that these galaxies tend to be very compact. The lower limit to their intrinsic size is about a factor of two smaller than that found for non-lensed LAEs, which highlights the power of gravitational lensing and sophisticated lens modelling techniques for resolving such objects in the high redshift Universe.

Author(s):  
N. R. Tanvir ◽  
E. Le Floc’h ◽  
L. Christensen ◽  
J. Caruana ◽  
R. Salvaterra ◽  
...  

AbstractAt peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. Their bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at z > 6 in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond $z\gtrsim 6$ z ≳ 6 ; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts.


2020 ◽  
Vol 58 (1) ◽  
pp. 617-659
Author(s):  
Masami Ouchi ◽  
Yoshiaki Ono ◽  
Takatoshi Shibuya

Hydrogen Lyman-α (Lyα) emission has been one of the major observational probes for the high-redshift Universe since the first discoveries of high- z Lyα-emitting galaxies in the late 1990s. Due to the strong Lyα emission originated by resonant scattering and recombination of the most abundant element, Lyα observations witness not only Hii regions of star formation and active galactic nuclei (AGNs) but also diffuse Hi gas in the circumgalactic medium (CGM) and the intergalactic medium (IGM). Here, we review Lyα sources and present theoretical interpretations reached to date. We conclude the following: ▪  A typical Lyα emitter (LAE) at z ≳ 2 with a L* Lyα luminosity is a high- z counterpart of a local dwarf galaxy, a compact metal-poor star-forming galaxy (SFG) with an approximate stellar (dark matter halo) mass and star-formation rate of 108−9M⊙ (1010−11M⊙) and 1–10 M⊙ year−1, respectively. ▪  High- z SFGs ubiquitously have a diffuse Lyα-emitting halo in the CGM extending to the halo virial radius and beyond. ▪  Remaining neutral hydrogen at the epoch of cosmic reionization makes a strong dimming of Lyα emission for galaxies at z > 6 that suggests the late reionization history. The next-generation large-telescope projects will combine Lyα emission data with Hi Lyα absorptions and 21-cm radio data that map out the majority of hydrogen (Hi+Hii) gas, uncovering the exchanges of ( a) matter by outflow and inflow and ( b) radiation, relevant to cosmic reionization, between galaxies and the CGM/IGM.


2015 ◽  
Vol 11 (S315) ◽  
pp. 254-257
Author(s):  
Miroslava Dessauges-Zavadsky ◽  
Michel Zamojski ◽  
Daniel Schaerer ◽  
Françoise Combes ◽  
Eiichi Egami ◽  
...  

AbstractCurrent star-forming galaxies (SFGs) with CO measurements at z ~ 2 suffer from a bias toward high star formation rates (SFR) and high stellar masses (M*). It is yet essential to extend the CO measurements to the more numerous z ~ 2 SFGs with LIR < L⋆ = 4× 1011 L⊙ and M* < 2.5× 1010 M⊙. We have achieved CO, stars, and dust measurements in 8 such sub-L⋆ SFGs with the help of gravitational lensing. Combined with CO-detected galaxies from the literature, we find that the LIR, L′CO(1−0) data are best-fitted with a single relation that favours a universal star formation. This picture emerges because of the enlarged star formation efficiency spread of the current z>1 SFGs sample. We show that this spread is mostly triggered by the combination of redshift, specific SFR, and M*. Finally, we find evidence for a non-universal dust-to-gas ratio (DGR) with a clear trend for a lower DGR mean in z>1 SFGs by a factor of 2 with respect to local galaxies and high-redshift sub-mm galaxies at fixed about solar metallicity.


2019 ◽  
Vol 15 (S341) ◽  
pp. 240-244
Author(s):  
Hidenobu Yajima ◽  
Shohei Arata ◽  
Makito Abe ◽  
Kentaro Nagamine

AbstractRecent discoveries of high-redshift galaxies have revealed the diversity of their physical properties, from normal star-forming galaxies to starburst galaxies. To understand the properties of these observed galaxies, it is crucial to understand the star formation (SF) history, and the radiation properties associated with the SF activity. Here we present the results of cosmological hydrodynamic simulations with zoom-in initial conditions, and show the formation of the first galaxies and their evolution towards observable galaxies at z = 6. In addition, we show their multi-wavelength radiative properties. We find that star formation occurs intermittently due to supernova (SN) feedback at z > 10, and their radiation properties rapidly change with time. We suggest that the first galaxies are bright at UV wavelengths just after the starburst phase, and become extended Lyman-alpha sources. We also show that massive galaxies cause dusty starburst and become bright at infrared wavelengths.


2018 ◽  
Vol 619 ◽  
pp. A15 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
D. Schaerer ◽  
J. Richard ◽  
K. Nakajima ◽  
...  

Observations have shown that massive star-forming clumps are present in the internal structure of high-redshift galaxies. One way to study these clumps in detail with a higher spatial resolution is by exploiting the power of strong gravitational lensing which stretches images on the sky. In this work, we present an analysis of the clumpy galaxy A68-HLS115 at z = 1.5858, located behind the cluster Abell 68, but strongly lensed by a cluster galaxy member. Resolved observations with SINFONI/VLT in the near-infrared (NIR) show Hα, Hβ, [NII], and [OIII] emission lines. Combined with images covering the B band to the far-infrared (FIR) and CO(2–1) observations, this makes this galaxy one of the only sources for which such multi-band observations are available and for which it is possible to study the properties of resolved star-forming clumps and to perform a detailed analysis of the integrated properties, kinematics, and metallicity. We obtain a stability of υrot/σ0 = 2.73 by modeling the kinematics, which means that the galaxy is dominated by rotation, but this ratio also indicates that the disk is marginally stable. We find a high intrinsic velocity dispersion of 80 ± 10 km s−1 that could be explained by the high gas fraction of fgas = 0.75 ± 0.15 observed in this galaxy. This high fgas and the observed sSFR of 3.12 Gyr−1 suggest that the disk turbulence and instabilities are mostly regulated by incoming gas (available gas reservoir for star formation). The direct measure of the Toomre stability criterion of Qcrit = 0.70 could also indicate the presence of a quasi-stable thick disk. Finally, we identify three clumps in the Hα map which have similar velocity dispersions, metallicities, and seem to be embedded in the rotating disk. These three clumps contribute together to ∼40% on the SFRHα of the galaxy and show a star formation rate density about ∼100 times higher than HII regions in the local Universe.


2020 ◽  
Vol 499 (1) ◽  
pp. L105-L110
Author(s):  
R Marques-Chaves ◽  
J Álvarez-Márquez ◽  
L Colina ◽  
I Pérez-Fournon ◽  
D Schaerer ◽  
...  

ABSTRACT We report the discovery of BOSS-EUVLG1 at z = 2.469, by far the most luminous, almost un-obscured star-forming galaxy known at any redshift. First classified as a QSO within the Baryon Oscillation Spectroscopic Survey, follow-up observations with the Gran Telescopio Canarias reveal that its large luminosity, MUV ≃ −24.40 and log(LLyα/erg s–1) ≃ 44.0, is due to an intense burst of star formation, and not to an active galactic nucleus or gravitational lensing. BOSS-EUVLG1 is a compact (reff ≃ 1.2 kpc), young (4–5 Myr) starburst with a stellar mass log(M*/M⊙) = 10.0 ± 0.1 and a prodigious star formation rate of ≃1000 M⊙ yr−1. However, it is metal- and dust-poor [12 + log(O/H) = 8.13 ± 0.19, E(B – V) ≃ 0.07, log(LIR/LUV) &lt; −1.2], indicating that we are witnessing the very early phase of an intense starburst that has had no time to enrich the ISM. BOSS-EUVLG1 might represent a short-lived (&lt;100 Myr), yet important phase of star-forming galaxies at high redshift that has been missed in previous surveys. Within a galaxy evolutionary scheme, BOSS-EUVLG1 could likely represent the very initial phases in the evolution of massive quiescent galaxies, even before the dusty star-forming phase.


2014 ◽  
Vol 10 (S309) ◽  
pp. 129-132 ◽  
Author(s):  
David Fisher ◽  

AbstractWe highlight recent results on the DYNAMO survey of turbulent, clumpy disks galaxies found at z=0.1. Bright star forming DYNAMO galaxies are found to be very similar in properties to star forming galaxies in the high redshift Universe. Typical star formation rates of turbulent DYNAMO galaxies range 10-80 M⊙ yr−1. Roughly 2/3 of DYNAMO galaxies have Hα kinematics that are consistent with rotation. The typical gas velocity dispersion of DYNAMO galaxies is σHα ~ 20 - 60 km s−1. We show that, when convolved to the same resolution, maps of Hα emission in DYNAMO galaxies have essentially identical morphology as that of z ~ 1 - 3 galaxies. Finally, DYNAMO galaxies have high molecular gas fractions fmol ~ 20 - 35%. We note that DYNAMO galaxies are not dwarfs, typical masses are Mstar ~ 0.8 - 8 × 1010 M⊙. These data are all consistent with a scenario in which despite being at relatively low redshift the DYNAMO galaxies are forming stars similarly to that observed in the high-redshift Universe, that is to say star formation is occurring in very massive (Mclump ~ 109 M⊙), very large (rclump ~ 300 pc) clumps of gas.


2018 ◽  
Vol 609 ◽  
pp. A83 ◽  
Author(s):  
C. Inserra ◽  
R. C. Nichol ◽  
D. Scovacricchi ◽  
J. Amiaux ◽  
M. Brescia ◽  
...  

Context. In the last decade, astronomers have found a new type of supernova called superluminous supernovae (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z ~ 4 and therefore, offer the possibility of probing the distant Universe. Aims. We aim to investigate the possibility of detecting SLSNe-I using ESA’s Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. Methods. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS. To estimate the uncertainties, we calculated their distribution with two different set-ups, namely optimistic and pessimistic, adopting different star formation densities and rates. We also applied a standardization method to the peak magnitudes to create a simulated Hubble diagram to explore possible cosmological constraints. Results. We show that Euclid should detect approximately 140 high-quality SLSNe-I to z ~ 3.5 over the first five years of the mission (with an additional 70 if we lower our photometric classification criteria). This sample could revolutionize the study of SLSNe-I at z > 1 and open up their use as probes of star-formation rates, galaxy populations, the interstellar and intergalactic medium. In addition, a sample of such SLSNe-I could improve constraints on a time-dependent dark energy equation-of-state, namely w(a), when combined with local SLSNe-I and the expected SN Ia sample from the Dark Energy Survey. Conclusions. We show that Euclid will observe hundreds of SLSNe-I for free. These luminous transients will be in the Euclid data-stream and we should prepare now to identify them as they offer a new probe of the high-redshift Universe for both astrophysics and cosmology.


2008 ◽  
Vol 4 (S255) ◽  
pp. 129-133
Author(s):  
Regina E. Schulte-Ladbeck

AbstractI report on observations of the z=t 0.01 dwarf galaxy SBS1543+593 which is projected onto the background QSO HS1543+5921. As a star-forming galaxy first noted in emission, this dwarf is playing a pivotal role in our understanding of high-redshift galaxy populations, because it also gives rise to a Damped Lyman Alpha system. This enabled us to analyze, for the first time, the chemical abundance of α elements in a Damped Lyman Alpha galaxy using both, emission and absorption diagnostics. We find that the abundances agree with one another within the observational uncertainties. I discuss the implications of this result for the interpretation of high-redshift galaxy observations. A catalog of dwarf-galaxy–QSO projections culled from the Sloan Digital Sky Survey is provided to stimulate future work.


2019 ◽  
Vol 15 (S352) ◽  
pp. 325-325
Author(s):  
Roland Bacon

AbstractSpectroscopic observations of galaxies at high redshift has recently been revolutionised by the Multi Unit Spectroscopic Explorer (MUSE) instrument in operation at the VLT since 2014. Thanks to its unrivalled capabilities, MUSE has been able to increase by an order of magnitude the number of spectroscopic redshifts in these fields. The most spectacular increase is at high redshift (z > 3), where MUSE was able to detect thousands of Lyman-alpha emitters. In the deepest exposures, MUSE is even able to goes beyond the limiting magnitude of the deepest HST exposures. These observations have led to a breakthrough in our understanding of the high redshift universe: e.g. the discovery of Lyman-alpha emission from the circumgalactic medium around individual galaxies, the role and property of low mass galaxies. In this talk I will present the latest results obtained with the MUSE observations of the Hubble deep and ultra-deep fields.


Sign in / Sign up

Export Citation Format

Share Document