Quasar black hole masses and accretion rates across cosmic time

2019 ◽  
Vol 15 (S359) ◽  
pp. 57-61
Author(s):  
Michael Brotherton ◽  
Jaya Maithil ◽  
Adam Myers ◽  
Ohad Shemmer ◽  
Brandon Matthews ◽  
...  

AbstractQuasar black hole masses are most commonly estimated using broad emission lines in single epoch spectra based on scaling relationships determined from reverberation mapping of small samples of low-redshift objects. Several effects have been identified requiring modifications to these scaling relationships, resulting in significant reductions of the black hole mass determinations at high redshift. Correcting these systematic biases is critical to understanding the relationships among black hole and host galaxy properties. We are completing a program using the Gemini North telescope, called the Gemini North Infrared Spectrograph (GNIRS) Distant Quasar Survey (DQS), that has produced rest-frame optical spectra of about 200 high-redshift quasars (z = 1.5–3.5). The GNIRS-DQS will produce new and improved ultraviolet-based black hole mass and accretion rate prescriptions, as well as new redshift prescriptions for velocity zero points of high-z quasars, necessary to measure feedback.

2009 ◽  
Vol 5 (S267) ◽  
pp. 213-222
Author(s):  
Hagai Netzer

This review summarizes the important properties of active black holes (BHs) up to z ~ 2; their mass, accretion rate, and growth rate. At higher redshifts, such information is only available for small samples that do not represent the entire population of active galactic nuclei (AGNs). Black hole spin is still unknown; it is speculated to change with redshift, but with little experimental evidence. The available data sets also enable a direct comparison of BH accretion rates and host galaxy star-formation rates (SFRs). The ratio of the BH growth rate g(BH) and the bulge growth rate g(bulge), suggests that the two are proportional to each other. The local value of g(bulge)/g(BH) in low-luminosity AGNs is of order 100 and the corresponding ratio in high-luminosity, high-redshift AGNs is of order 10. This has important implications regarding the parallel evolution of active BHs and their hosts.


2019 ◽  
Vol 15 (S356) ◽  
pp. 365-365
Author(s):  
Dalya Baron

AbstractThe scaling relations between supermassive black holes and their host galaxy properties are of fundamental importance in the context black hole-host galaxy co-evolution throughout cosmic time. Beyond the local universe, such relations are based on black hole mass estimates in type I AGN. Unfortunately, for this type of objects the host galaxy properties are more difficult to obtain since the AGN dominates the observed flux in most wavelength ranges. In this poster I will present a new correlation we discovered between the narrow L([OIII])/L(Hβ) line ratio and the FWHM(broad Hα). This scaling relation ties the kinematics of the gas clouds in the broad line region to the ionization state of gas in the narrow line region, connecting the properties of gas clouds kiloparsecs away from the black hole to material gravitationally bound to it on sub-parsec scales. This relation can be used to estimate black hole masses from narrow emission lines only, and thus brings the missing piece required to estimate black hole masses in obscured type II AGN. Using this technique, we estimate the black hole mass of about 10,000 type II AGN, and present, for the first time, M(BH)-sigma and M(BH)-M(stars) scaling relations for this population. These relations are remarkably consistent with those observed for type I AGN, suggesting that this new method may perform as reliably as the classical estimate used in non-obscured type I AGN. These findings open a new window for studies of black hole-host galaxy co-evolution throughout cosmic time.


2019 ◽  
Vol 15 (S359) ◽  
pp. 37-39
Author(s):  
Benjamin L. Davis ◽  
Nandini Sahu ◽  
Alister W. Graham

AbstractOur multi-component photometric decomposition of the largest galaxy sample to date with dynamically-measured black hole masses nearly doubles the number of such galaxies. We have discovered substantially modified scaling relations between the black hole mass and the host galaxy properties, including the spheroid (bulge) stellar mass, the total galaxy stellar mass, and the central stellar velocity dispersion. These refinements partly arose because we were able to explore the scaling relations for various sub-populations of galaxies built by different physical processes, as traced by the presence of a disk, early-type versus late-type galaxies, or a Sérsic versus core-Sérsic spheroid light profile. The new relations appear fundamentally linked with the evolutionary paths followed by galaxies, and they have ramifications for simulations and formation theories involving both quenching and accretion.


2009 ◽  
Vol 5 (S267) ◽  
pp. 151-160 ◽  
Author(s):  
Bradley M. Peterson

AbstractWe review briefly direct and indirect methods of measuring the masses of black holes in galactic nuclei, and then focus attention on supermassive black holes in active nuclei, with special attention to results from reverberation mapping and their limitations. We find that the intrinsic scatter in the relationship between the AGN luminosity and the broad-line region size is very small, ~0.11 dex, comparable to the uncertainties in the better reverberation measurements. We also find that the relationship between reverberation-based black hole masses and host-galaxy bulge luminosities also seems to have surprisingly little intrinsic scatter, ~0.17 dex. We note, however, that there are still potential systematics that could affect the overall mass calibration at the level of a factor of a few.


2018 ◽  
Vol 14 (S342) ◽  
pp. 270-271
Author(s):  
C. Alenka Negrete ◽  
Deborah Dultzin ◽  
Paola Marziani ◽  
Jack W. Sulentic ◽  
M. L. Martínez-Aldama

AbstractWe present a method that uses photoionization codes (CLOUDY) to estimate the supermassive black hole masses (MBH) for quasars at low and high redshift. This method is based on the determination of the physical conditions of the broad line region (BLR) using observational diagnostic diagrams from line ratios in the UV. We also considered that the density and metallicity of the BLR in quasars at high z could be different from those at the nearby Universe. The computed black hole masses obtained using this method are in agreement with those derived from the method of reverberation mapping.


2009 ◽  
Vol 5 (S267) ◽  
pp. 197-197
Author(s):  
Misty C. Bentz ◽  

AbstractEight new black hole masses have been derived from a recent reverberation-mapping experiment carried out at Lick Observatory. The masses lie in the range ~ 106–107M⊙ and will allow us to extend the low end of AGN scaling relationships by a factor of ~10.


2019 ◽  
Vol 487 (3) ◽  
pp. 3404-3418 ◽  
Author(s):  
Dalya Baron ◽  
Brice Ménard

Abstract The scaling relations between supermassive black holes and their host galaxy properties are of fundamental importance in the context black hole-host galaxy co-evolution throughout cosmic time. In this work, we use a novel algorithm that identifies smooth trends in complex data sets and apply it to a sample of 2000 type 1 active galactic nuclei (AGNs) spectra. We detect a sequence in emission line shapes and strengths which reveals a correlation between the narrow L([O iii])/L(H β) line ratio and the width of the broad H α. This scaling relation ties the kinematics of the gas clouds in the broad line region to the ionization state of the narrow line region, connecting the properties of gas clouds kiloparsecs away from the black hole to material gravitationally bound to it on sub-parsec scales. This relation can be used to estimate black hole masses from narrow emission lines only. It therefore enables black hole mass estimation for obscured type 2 AGNs and allows us to explore the connection between black holes and host galaxy properties for thousands of objects, well beyond the local Universe. Using this technique, we present the MBH–σ and MBH–M* scaling relations for a sample of about 10 000 type 2 AGNs from Sloan Digital Sky Survey. These relations are remarkably consistent with those observed for type 1 AGNs, suggesting that this new method may perform as reliably as the classical estimate used in non-obscured type 1 AGNs. These findings open a new window for studies of black hole-host galaxy co-evolution throughout cosmic time.


2006 ◽  
Vol 2 (S238) ◽  
pp. 111-116
Author(s):  
Suzy Collin

AbstractBlack hole masses in Active Galactic Nuclei have been determined in 35 objects through reverberation mapping of the emission line region. I mention some uncertainties of the method, such as the “scale factor” relating the Virial Product to the mass, which depends on the unknown structure and dynamics of the Broad Line Region.When the black hole masses are estimated indirectly using the empirical size-luminosity relation deduced from this method, the uncertainties can be larger, especially when the relation is extrapolated to high and low masses and/or luminosities. In particular they lead to Eddington ratiosof the order of unity in samples of Narrow Line Seyfert 1. As the optical-UV luminosity is provided by the accretion disk, the accretion rates can be determined and are found to be much larger than the Eddington rates.So, accretion must be performed at a super-critical rate through a slim disk, resulting in rapid growth of the black holes. The alternative is that the mass determination is wrong at this limit.


2016 ◽  
Vol 12 (S324) ◽  
pp. 219-222
Author(s):  
Shai Kaspi

AbstractAbout 100 AGNs have their black hole mass measured directly using the reverberation mapping technique over the past few decades. By now we have high enough numbers to explore unique subsamples within these objects and to study phenomena across variety of AGNs. I will review recent reverberation mapping studies which focus on high-redshift high-luminosity AGNs and on AGNs with super-Eddington accreting massive black holes. These studies enable to investigate the BLR size, mass, and luminosity relations in different subsamples of AGNs and to check whether there are differences in these relations in different types of AGNs. In particular I will discuss the following questions: Is the BLR size - luminosity relation the same over the whole AGNs luminosity range? Are there different relations for different types of AGNs? What are these studies teaching us about theory of accretion into black holes in AGNs?


2019 ◽  
Vol 625 ◽  
pp. A62 ◽  
Author(s):  
Sabine Thater ◽  
Davor Krajnović ◽  
Michele Cappellari ◽  
Timothy A. Davis ◽  
P. Tim de Zeeuw ◽  
...  

Different massive black hole mass – host galaxy scaling relations suggest that the growth of massive black holes is entangled with the evolution of their host galaxies. The number of measured black hole masses is still limited and additional measurements are necessary to understand the underlying physics of this apparent coevolution. We add six new black hole mass (MBH) measurements of nearby fast rotating early-type galaxies to the known black hole mass sample, namely NGC 584, NGC 2784, NGC 3640, NGC 4570, NGC 4281, and NGC 7049. Our target galaxies have effective velocity dispersions (σe) between 170 and 245 km s−1, and thus this work provides additional insight into the black hole properties of intermediate-mass early-type galaxies. We combined high-resolution adaptive-optics SINFONI data with large-scale MUSE, VIMOS and SAURON data from ATLAS3D to derive two-dimensional stellar kinematics maps. We then built both Jeans Anisotropic Models and axisymmetric Schwarzschild models to measure the central black hole masses. Our Schwarzschild models provide black hole masses of (1.3 ± 0.5) × 108 M⊙ for NGC 584, (1.0 ± 0.6) × 108 M⊙ for NGC 2784, (7.7 ± 5) × 107 M⊙ for NGC 3640, (5.4 ± 0.8) × 108 M⊙ for NGC 4281, (6.8 ± 2.0) × 107 M⊙ for NGC 4570, and (3.2 ± 0.8) × 108 M⊙ for NGC 7049 at 3σ confidence level, which are consistent with recent MBH−σe scaling relations. NGC 3640 has a velocity dispersion dip and NGC 7049 a constant velocity dispersion in the center, but we can clearly constrain their lower black hole mass limit. We conclude our analysis with a test on NGC 4570 taking into account a variable mass-to-light ratio (M/L) when constructing dynamical models. When considering M/L variations linked mostly to radial changes in the stellar metallicity, we find that the dynamically determined black hole mass from NGC 4570 decreases by 30%. Further investigations are needed in the future to account for the impact of radial M/L gradients on dynamical modeling.


Sign in / Sign up

Export Citation Format

Share Document