Dirt-cheap gas scaling relations: Using dust attenuation and galaxy radius to predict gas masses for large samples of AGNs

2019 ◽  
Vol 15 (S356) ◽  
pp. 173-173
Author(s):  
Hassen Yesuf

AbstractWe analyze the molecular and atomic gas data from the GALEX Arecibo SDSS Survey (xGASS) and the extended CO Legacy Database (xCOLD GASS) IRAM survey using novel survival analysis techniques to identify a small number of stellar properties that best correlate with the gas mass. We find that the dust absorption, AV, and the stellar half-light radius, R50, are likely the two best secondary parameters than improve the Kennicutt - Schmidt type relation between the gas mass and the star formation rate, SFR. We fit multiple regression, taking into account gas mass upper limits, to summarize the median, mean, and the 0.15/0.85 quantile multivariate relationships between the gas mass (atomic or molecular hydrogen), SFR, AV and/or R50. In particular, we find that the AV of both the stellar continuum and nebular gas emission shows a significant partial correlation with the molecular hydrogen after controlling for the effect of SFR. The partial correlation between the AV and the atomic gas, however, is weak and their zero-order correlation may be explained by SFR. This is expected since in poorly dust-shielded regions molecular hydrogen is dissociated by the far ultraviolet photons and HI is the dominant phase. Similarly, R50 shows significant partial correlations with both atomic and molecular gas masses. This hints at the importance of environment (e.g., galacto-centric distance) on the gas contents galaxies and on the interplay between gas and star formation rate. We apply the gas scaling relations we found to a large sample of type 2 and type 1 AGNs and infer that the gas mass correlates with AGN luminosity. This correlation is inconsistent with the prediction of AGN feedback models that strong AGNs remove or heat cold gas in their host galaxies.

2018 ◽  
Vol 14 (S346) ◽  
pp. 247-251
Author(s):  
Konstantinos Kovlakas ◽  
Andreas Zezas ◽  
Jeff J. Andrews ◽  
Antara Basu-Zych ◽  
Tassos Fragos ◽  
...  

Abstract. The nature and evolution of ultraluminous X-ray sources (ULXs) is an open problem in astrophysics. They challenge our current understanding of stellar compact objects and accretion physics. The recent discovery of pulsar ULXs further demonstrates the importance of this intriguing and rare class of objects.In order to overcome the difficulties of directly studying the optical associations of ULXs, we generally resort in statistical studies of the stellar properties of their host galaxies. We present the largest such study based on the combination of Chandra archival data with the most complete galaxy catalog of the Local Universe. Incorporating robust distances and stellar population parameters based on associated multi-wavelength information, and we explore the association of ULXs with galaxies in the (star formation rate, stellar mass, metallicity) space.We confirm the known correlation with morphology, star formation rate and stellar mass, while we find an excess of ULXs in dwarf galaxies, indicating dependence on age and metallicity.


2020 ◽  
Vol 500 (3) ◽  
pp. 3123-3141
Author(s):  
Swagat R Das ◽  
Jessy Jose ◽  
Manash R Samal ◽  
Shaobo Zhang ◽  
Neelam Panwar

ABSTRACT The processes that regulate star formation within molecular clouds are still not well understood. Various star formation scaling relations have been proposed as an explanation, one of which is to formulate a relation between the star formation rate surface density $\rm \Sigma _{SFR}$ and the underlying gas surface density $\rm \Sigma _{gas}$. In this work, we test various star formation scaling relations, such as the Kennicutt–Schmidt relation, the volumetric star formation relation, the orbital time model, the crossing time model and the multi free-fall time-scale model, towards the North American Nebula and Pelican Nebula and in the cold clumps associated with them. Measuring stellar mass from young stellar objects and gaseous mass from CO measurements, we estimate the mean $\rm \Sigma _{SFR}$, the star formation rate per free-fall time and the star formation efficiency for clumps to be 1.5 $\rm M_{\odot}\, yr^{-1}\, kpc^{-2}$, 0.009 and 2.0 per cent, respectively, while for the whole region covered by both nebulae (which we call the ‘NAN’ complex) the values are 0.6 $\rm M_{\odot}\, yr^{-1}\, kpc^{-2}$, 0.0003 and 1.6 per cent, respectively. For the clumps, we notice that the observed properties are in line with the correlation obtained between $\rm \Sigma _{SFR}$ and $\rm \Sigma _{gas}$, and between $\rm \Sigma _{SFR}$ and $\rm \Sigma _{gas}$ per free-fall time and orbital time for Galactic clouds. At the same time, we do not observe any correlation with $\rm \Sigma _{gas}$ per crossing time and multi free-fall time. Even though we see correlations in the former cases, however, all models agree with each other within a factor of 0.5 dex. It is not possible to discriminate between these models because of the current uncertainties in the input observables. We also test the variation of $\rm \Sigma _{SFR}$ with the dense gas but, because of low statistics, a weak correlation is seen in our analysis.


2005 ◽  
Vol 619 (1) ◽  
pp. L47-L50 ◽  
Author(s):  
D. Schiminovich ◽  
O. Ilbert ◽  
S. Arnouts ◽  
B. Milliard ◽  
L. Tresse ◽  
...  

2009 ◽  
Vol 695 (2) ◽  
pp. 937-953 ◽  
Author(s):  
R. Braun ◽  
D. A. Thilker ◽  
R. A. M. Walterbos ◽  
E. Corbelli

2015 ◽  
Vol 11 (A29B) ◽  
pp. 717-718
Author(s):  
Nate Bastian

AbstractWe review some of the basic population properties of stellar clusters, as well as how they relate to star-formation more broadly within their host galaxies. Despite the common assertion, the vast majority of stars do not form within stellar clusters. For typical galaxies (including the solar neighbourhood), the fraction of stars forming in clusters is ~10%. There are indications however that this fraction increases as a function of increasing star-formation rate surface density, in agreement with model predictions (based on a turbulent ISM and relatively straight-forward prescriptions of star-formation).


2016 ◽  
Vol 11 (S321) ◽  
pp. 360-362
Author(s):  
Marc Rafelski

AbstractIn order to understand the origin of the decreased star formation rate (SFR) efficiency of neutral atomic hydrogen gas measured in Damped Lyα Systems (DLAs) at z ~ 3, we measure the SFR efficiency of atomic gas at z ~ 1, z ~ 2, and z ~ 3 around star-forming galaxies. We create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies’ outskirts. We find that the SFR efficiency of Hi gas is ~ 3% of that predicted by the KS relation. We find no significant evolution in the SFR efficiency with redshift, although simulations and models predict a decreasing SFR efficiency with decreasing metallicity and thus with increasing redshift. We discuss possible explanations for this decreased efficiency without an evolution with redshift.


2014 ◽  
Vol 445 (2) ◽  
pp. 1392-1402 ◽  
Author(s):  
Sambit Roychowdhury ◽  
Jayaram N. Chengalur ◽  
Serafim S. Kaisin ◽  
Igor D. Karachentsev

2013 ◽  
Vol 9 (S304) ◽  
pp. 302-306
Author(s):  
Chien-Ting J. Chen ◽  
Ryan C. Hickox

AbstractWe present the results of recent studies on the co-evolution of galaxies and the supermassive black holes (SMBHs) using Herschel far-infrared and Chandra X-ray observations in the Boötes survey region. For a sample of star-forming (SF) galaxies, we find a strong correlation between galactic star formation rate and the average SMBH accretion rate in SF galaxies. Recent studies have shown that star formation and AGN accretion are only weakly correlated for individual AGN, but this may be due to the short variability timescale of AGN relative to star formation. Averaging over the full AGN population yields a strong linear correlation between accretion and star formation, consistent with a simple picture in which the growth of SMBHs and their host galaxies are closely linked over galaxy evolution time scales.


Sign in / Sign up

Export Citation Format

Share Document