The impact of AGN on the life of their host galaxies at z ∼ 2

2019 ◽  
Vol 15 (S356) ◽  
pp. 194-198
Author(s):  
Chiara Circosta

AbstractFeedback from active galactic nuclei (AGN) is thought to be key in shaping the life cycle of host galaxies by regulating star formation. Therefore, measuring the molecular gas reservoir out of which stars form is essential to understand the impact of AGN on star formation. In this talk I present an ongoing analysis to study the CO(J = 3−2) emission in a sample of 25 AGN at z ∼ 2 using ALMA observations. The CO properties of our AGN have been compared to normal (non-AGN) star-forming galaxies. The comparison between the two samples reveals that, on average, the CO luminosities of AGN at high stellar masses (log(M*/M⊙) > 11) are 0.5 dex lower than normal galaxies. We ascribe this difference to the AGN activity, which could be able to change the conditions of the gas through, e.g., excitation, heating or removal of CO.


2019 ◽  
Vol 624 ◽  
pp. A81 ◽  
Author(s):  
Allison W. S. Man ◽  
Matthew D. Lehnert ◽  
Joël D. R. Vernet ◽  
Carlos De Breuck ◽  
Theresa Falkendal

The objective of this work is to study how active galactic nuclei (AGN) influence star formation in host galaxies. We present a detailed investigation of the star-formation history and conditions of a z = 2.57 massive radio galaxy based on VLT/X-shooter and ALMA observations. The deep rest-frame ultraviolet spectrum contains photospheric absorption lines and wind features indicating the presence of OB-type stars. The most significantly detected photospheric features are used to characterize the recent star formation: neither instantaneous nor continuous star-formation history is consistent with the relative strength of the Si IIλ1485 and S Vλ1502 absorption. Rather, at least two bursts of star formation took place in the recent past, at 6+1-2 Myr and ≳20 Myr ago, respectively. We deduce a molecular H2 gas mass of (3.9 ± 1.0) × 1010 M⊙ based on ALMA observations of the [C I] 3P2−3P1 emission. The molecular gas mass is only 13% of its stellar mass. Combined with its high star-formation rate of (1020-170+190 M⊙ yr-1, this implies a high star-formation efficiency of (26 ± 8) Gyr−1 and a short depletion time of (38 ± 12) Myr. We attribute the efficient star formation to compressive gas motions in order to explain the modest velocity dispersions (⩽55 km s−1) of the photospheric lines and of the star-forming gas traced by [C I]. Because of the likely very young age of the radio source, our findings suggest that vigorous star formation consumes much of the gas and works in concert with the AGN to remove any residual molecular gas, and eventually quenching star formation in massive galaxies.



2020 ◽  
Vol 498 (2) ◽  
pp. 2323-2338
Author(s):  
Thomas M Jackson ◽  
D J Rosario ◽  
D M Alexander ◽  
J Scholtz ◽  
Stuart McAlpine ◽  
...  

ABSTRACT In this paper, we present data from 72 low-redshift, hard X-ray selected active galactic nucleus (AGN) taken from the Swift–BAT 58 month catalogue. We utilize spectral energy distribution fitting to the optical to infrared photometry in order to estimate host galaxy properties. We compare this observational sample to a volume- and flux-matched sample of AGN from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulations in order to verify how accurately the simulations can reproduce observed AGN host galaxy properties. After correcting for the known +0.2 dex offset in the SFRs between EAGLE and previous observations, we find agreement in the star formation rate (SFR) and X-ray luminosity distributions; however, we find that the stellar masses in EAGLE are 0.2–0.4 dex greater than the observational sample, which consequently leads to lower specific star formation rates (sSFRs). We compare these results to our previous study at high redshift, finding agreement in both the observations and simulations, whereby the widths of sSFR distributions are similar (∼0.4–0.6 dex) and the median of the SFR distributions lie below the star-forming main sequence by ∼0.3–0.5 dex across all samples. We also use EAGLE to select a sample of AGN host galaxies at high and low redshift and follow their characteristic evolution from z = 8 to z = 0. We find similar behaviour between these two samples, whereby star formation is quenched when the black hole goes through its phase of most rapid growth. Utilizing EAGLE we find that 23 per cent of AGN selected at z ∼ 0 are also AGN at high redshift, and that their host galaxies are among the most massive objects in the simulation. Overall, we find EAGLE reproduces the observations well, with some minor inconsistencies (∼0.2 dex in stellar masses and ∼0.4 dex in sSFRs).



2020 ◽  
Vol 498 (2) ◽  
pp. 1560-1575 ◽  
Author(s):  
M E Jarvis ◽  
C M Harrison ◽  
V Mainieri ◽  
G Calistro Rivera ◽  
P Jethwa ◽  
...  

ABSTRACT We use a sample of powerful $z\, \approx \, 0.1$ type 2 quasars (‘obscured’; log [LAGN/erg s$^{-1}]\, \gtrsim \, 45$), which host kpc-scale ionized outflows and jets, to identify possible signatures of AGN feedback on the total molecular gas reservoirs of their host galaxies. Specifically, we present Atacama Pathfinder EXperiment (APEX) observations of the CO(2–1) transition for nine sources and the CO(6–5) for a subset of three. We find that the majority of our sample reside in starburst galaxies (average specific star formation rates – sSFR – of 1.7 Gyr−1), with the seven CO-detected quasars also having large molecular gas reservoirs (average Mgas = 1.3 × 1010 M⊙), even though we had no pre-selection on the star formation or molecular gas properties. Despite the presence of quasars and outflows, we find that the molecular gas fractions (Mgas/M⋆ = 0.1–1.2) and depletion times (Mgas/SFR = 0.16–0.95 Gyr) are consistent with those expected for the overall galaxy population with matched stellar masses and sSFRs. Furthermore, for at least two of the three targets with the required measurements, the CO(6–5)/CO(2–1) emission-line ratios are consistent with star formation dominating the CO excitation over this range of transitions. The targets in our study represent a gas-rich phase of galaxy evolution with simultaneously high levels of star formation and nuclear activity; furthermore, the jets and outflows do not have an immediate appreciable impact on the global molecular gas reservoirs.



2019 ◽  
Vol 486 (1) ◽  
pp. 344-359 ◽  
Author(s):  
Bruno Rodríguez del Pino ◽  
Santiago Arribas ◽  
Javier Piqueras López ◽  
Montserrat Villar-Martín ◽  
Luis Colina

ABSTRACT We present the results from a systematic search and characterization of ionized outflows in nearby galaxies using the data from the second Data Release of the Mapping Nearby Galaxies at Arecibo Point Observatory (MaNGA) Survey (DR2; >2700 galaxies, z ≤ 0.015). Using the spatially resolved spectral information provided by the MANGA data, we have identified ∼5200 H α-emitting regions across the galaxies and searched for signatures of ionized outflows. We find evidence for ionized outflows in 105 regions from 103 galaxies, roughly 7 per cent of all the H α-emitting galaxies identified in this work. Most of the outflows are nuclear, with only two cases detected in off-nuclear regions. Our analysis allows us to study ionized outflows in individual regions with star formation rates (SFRs) down to ∼0.01 M⊙ yr−1, extending the ranges probed by previous works. The kinematics of the outflowing gas is strongly linked to the type of ionization mechanism: regions characterized by low-ionization emission region emission (LIER) host the outflows with more extreme kinematics (FWHMbroad ∼ 900 km s−1), followed by those originated in active galactic nuclei (550 km s−1), ‘Intermediate’ (450 km s−1), and star-forming (350 km s−1) regions. Moreover, in most of the outflows we find evidence for gas ionized by shocks. We find a trend for higher outflow kinematics towards larger stellar masses of the host galaxies but no significant variation as a function of star formation properties within the SFR regime we probe (∼0.01–10 M⊙ yr−1). Our results also show that the fraction of outflowing gas that can escape from galaxies decreases towards higher dynamical masses, contributing to the preservation of the mass–metallicity relation by regulating the amount of metals in galaxies. Finally, assuming that the extensions of the outflows are significantly larger than the individual star-forming regions, as found in previous works, our results also support the presence of star formation within ionized outflows, as recently reported by Maiolino et al. (2017) and Gallagher et al. (2018).



2013 ◽  
Vol 9 (S304) ◽  
pp. 343-344
Author(s):  
M. Bonzini ◽  
V. Mainieri ◽  
P. Padovani ◽  
K. I. Kellermann ◽  
N. Miller ◽  
...  

AbstractWith the goal of investigating the link between black hole (BH) and star formation (SF) activity, we study a deep sample of radio selected star forming galaxies (SFGs) and active galactic nuclei (AGNs). Using a multi-wavelength approach we characterize their host galaxies properties (stellar masses, optical colors, and morphology). Moreover, comparing the star formation rate derived from the radio and far-infrared luminosity, we found evidences that the main contribution to the radio emission in the radio-quiet AGNs is star-formation activity in their host galaxy.



2020 ◽  
Vol 500 (3) ◽  
pp. 3667-3688
Author(s):  
H R Stacey ◽  
J P McKean ◽  
D M Powell ◽  
S Vegetti ◽  
F Rizzo ◽  
...  

ABSTRACT We resolve the host galaxies of seven gravitationally lensed quasars at redshift 1.5–2.8 using observations with the Atacama Large (sub)Millimetre Array. Using a visibility plane lens modelling technique, we create pixellated reconstructions of the dust morphology, and CO line morphology and kinematics. We find that the quasar hosts in our sample can be distinguished into two types: (1) galaxies characterized by clumpy, extended dust distributions (Reff ∼ 2 kpc) and mean star formation rate (SFR) surface densities comparable to sub-mm-selected dusty star-forming galaxies (ΣSFR ∼ 3  M⊙ yr−1 kpc−2 ) and (2) galaxies that have sizes in dust emission similar to coeval passive galaxies and compact starbursts (Reff ∼ 0.5 kpc), with high mean SFR surface densities (ΣSFR = 400–4500  M⊙ yr−1 kpc−2 ) that may be Eddington-limited or super-Eddington. The small sizes of some quasar hosts suggest that we observe them at a stage in their transformation into compact spheroids via dissipative contraction, where a high density of dynamically unstable gas leads to efficient star formation and black hole accretion. For the one system where we probe the bulk of the gas reservoir, we find a gas fraction of just 0.06 ± 0.04 and a depletion time-scale of 50 ± 40 Myr, suggesting it is transitioning into quiescence. In general, we expect that the extreme level of star formation in the compact quasar host galaxies will rapidly exhaust their gas reservoirs and could quench with or without help from active galactic nucleus feedback.



2011 ◽  
Vol 7 (S279) ◽  
pp. 353-354
Author(s):  
Jirong Mao

AbstractLong gamma-ray bursts (GRBs) can be linked to the massive stars and their host galaxies are assumed to be the star-forming galaxies within small dark matter halos. We apply a galaxy evolution model, in which the star formation process inside the virialized dark matter halo at a given redshift is achieved. The star formation rates (SFRs) in the GRB host galaxies at different redshifts can be derived from our model. The related stellar masses, luminosities, and metalicities of these GRB host galaxies are estimated. We also calculate the X-ray and optical absorption of GRB afterglow emission. At higher redshift, the SFR of host galaxy is stronger, and the absorption in the X-ray and optical bands of GRB afterglow is stronger, when the dust and metal components are locally released, surrounding the GRB environment. These model predictions are compared with some observational data as well.



2019 ◽  
Vol 491 (1) ◽  
pp. 1518-1529 ◽  
Author(s):  
Rogemar A Riffel ◽  
Nadia L Zakamska ◽  
Rogério Riffel

ABSTRACT In most galaxies, the fluxes of rotational H2 lines strongly correlate with star formation diagnostics [such as polycyclic aromatic hydrocarbons (PAHs)], suggesting that H2 emission from warm molecular gas is a minor by-product of star formation. We analyse the optical properties of a sample of 309 nearby galaxies derived from a parent sample of 2015 objects observed with the Spitzer Space Telescope. We find a correlation between the [O i]λ6300 emission-line flux and kinematics and the H2 S(3) 9.665 $\mu\mathrm{ m}$/PAH 11.3  $\mu\mathrm{ m}$. The [O i]λ6300 kinematics in active galactic nuclei (AGNs) cannot be explained only by gas motions due to the gravitational potential of their host galaxies, suggesting that AGN-driven outflows are important to the observed kinematics. While H2 excess also correlates with the fluxes and kinematics of ionized gas (probed by [O iii]), the correlation with [O i] is much stronger, suggesting that H2 and [O i] emissions probe the same phase or tightly coupled phases of the wind. We conclude that the excess of H2 emission seen in AGNs is produced by shocks due to AGN-driven outflows and in the same clouds that produce the [O i] emission. Our results provide an indirect detection of neutral and molecular winds and suggest a new way to select galaxies that likely host molecular outflows. Further ground- and space-based spatially resolved observations of different phases of the molecular gas (cold, warm, and hot) are necessary to test our new selection method.



2018 ◽  
Vol 617 ◽  
pp. A143 ◽  
Author(s):  
Michał J. Michałowski ◽  
A. Karska ◽  
J. R. Rizzo ◽  
M. Baes ◽  
A. J. Castro-Tirado ◽  
...  

Context. Long gamma-ray bursts (GRBs) can potentially be used as a tool to study star formation and recent gas accretion onto galaxies. However, the information about gas properties of GRB hosts is scarce. In particular, very few carbon monoxide (CO) line detections of individual GRB hosts have been reported. It has also been suggested that GRB hosts have lower molecular gas masses than expected from their star formation rates (SFRs). Aims. The objectives of this paper are to analyse molecular gas properties of the first substantial sample of GRB hosts and test whether they are deficient in molecular gas. Methods. We obtained CO(2-1) observations of seven GRB hosts with the APEX and IRAM 30 m telescopes. We analysed these data together with all other hosts with previous CO observations. From these observations we calculated the molecular gas masses of these galaxies and compared them with the expected values based on their SFRs and metallicities. Reults. We obtained detections for 3 GRB hosts (980425, 080207, and 111005A) and upper limits for the remaining 4 (031203, 060505, 060814, and 100316D). In our entire sample of 12 CO-observed GRB hosts, 3 are clearly deficient in molecular gas, even taking into account their metallicity (980425, 060814, and 080517). Four others are close to the best-fit line for other star-forming galaxies on the SFR-MH2 plot (051022, 060505, 080207, and 100316D). One host is clearly molecule rich (111005A). Finally, the data for 4 GRB hosts are not deep enough to judge whether they are molecule deficient (000418, 030329, 031203, and 090423). The median value of the molecular gas depletion time, MH2/SFR, of GRB hosts is ∼0.3 dex below that of other star-forming galaxies, but this result has low statistical significance. A Kolmogorov–Smirnov test performed on MH2/SFR shows an only ∼2σ difference between GRB hosts and other galaxies. This difference can partly be explained by metallicity effects, since the significance decreases to ∼1σ for MH2/SFR versus metallicity. Conclusions. We found that any molecular gas deficiency of GRB hosts has low statistical significance and that it can be attributed to their lower metallicities; and thus the sample of GRB hosts has molecular properties that are consistent with those of other galaxies, and they can be treated as representative star-forming galaxies. However, the molecular gas deficiency can be strong for GRB hosts if they exhibit higher excitations and/or a lower CO-to-H2 conversion factor than we assume, which would lead to lower molecular gas masses than we derive. Given the concentration of atomic gas recently found close to GRB and supernova sites, indicating recent gas inflow, our results about the weak molecular deficiency imply that such an inflow does not enhance the SFRs significantly, or that atomic gas converts efficiently into the molecular phase, which fuels star formation. Only if the analysis of a larger GRB host sample reveals molecular deficiency (especially close to the GRB position) would this support the hypothesis of star formation that is directly fuelled by atomic gas.



Sign in / Sign up

Export Citation Format

Share Document