RULES FOR SUBATOMIC DERIVATION

2010 ◽  
Vol 4 (2) ◽  
pp. 219-236 ◽  
Author(s):  
BARTOSZ WIĘCKOWSKI

In proof-theoretic semantics the meaning of an atomic sentence is usually determined by a set of derivations in an atomic system which contain that sentence as a conclusion (see, in particular, Prawitz, 1971, 1973). The paper critically discusses this standard approach and suggests an alternative account which proceeds in terms of subatomic introduction and elimination rules for atomic sentences. A simple subatomic normal form theorem by which this account of the semantics of atomic sentences and the terms from which they are composed is underpinned, shows moreover that the proof-theoretic analysis of first-order logic can be pursued also beneath the atomic level.

2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


2015 ◽  
Vol 21 (2) ◽  
pp. 123-163 ◽  
Author(s):  
ROY DYCKHOFF ◽  
SARA NEGRI

AbstractThat every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can be seen as a modification of Skolem’s argument from 1920 for his “Normal Form” theorem. “Geometric” being the infinitary version of “coherent”, it is further shown that every infinitary first-order theory, suitably restricted, has a geometric conservative extension, hence the title. The results are applied to simplify methods used in reasoning in and about modal and intermediate logics. We include also a new algorithm to generate special coherent implications from an axiom, designed to preserve the structure of formulae with relatively little use of normal forms.


2008 ◽  
Vol 19 (01) ◽  
pp. 205-217 ◽  
Author(s):  
STEVEN LINDELL

We use singulary vocabularies to analyze first-order definability over doubly-linked data structures. Singulary vocabularies contain only monadic predicate and monadic function symbols. A class of mathematical structures in any vocabulary can be elementarily interpreted in a singulary vocabulary, while preserving notions of total size and degree. Doubly-linked data structures are a special case of bounded-degree finite structures in which there are reciprocal connections between elements, corresponding closely with physically feasible models of information storage. They can be associated with logical models involving unary relations and bijective functions in what we call an invertible singulary vocabulary. Over classes of these models, there is a normal form for first-order logic which eliminates all quantification of dependent variables. The paper provides a syntactically based proof using counting quantifiers. It also makes precise the notion of implicit calculability for arbitrary arity first-order formulas. Linear-time evaluation of first-order logic over doubly-linked data structures becomes a direct corollary. Included is a discussion of why these special data structures are appropriate for physically realizable models of information.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Matthias Hoelzel ◽  
Richard Wilke

We present syntactic characterisations for the union closed fragments of existential second-order logic and of logics with team semantics. Since union closure is a semantical and undecidable property, the normal form we introduce enables the handling and provides a better understanding of this fragment. We also introduce inclusion-exclusion games that turn out to be precisely the corresponding model-checking games. These games are not only interesting in their own right, but they also are a key factor towards building a bridge between the semantic and syntactic fragments. On the level of logics with team semantics we additionally present restrictions of inclusion-exclusion logic to capture the union closed fragment. Moreover, we define a team based atom that when adding it to first-order logic also precisely captures the union closed fragment of existential second-order logic which answers an open question by Galliani and Hella.


2008 ◽  
Vol 31 ◽  
pp. 259-272
Author(s):  
Y. Liu ◽  
G. Lakemeyer

Levesque proposed a generalization of a database called a proper knowledge base (KB), which is equivalent to a possibly infinite consistent set of ground literals. In contrast to databases, proper KBs do not make the closed-world assumption and hence the entailment problem becomes undecidable. Levesque then proposed a limited but efficient inference method V for proper KBs, which is sound and, when the query is in a certain normal form, also logically complete. He conjectured that for every first-order query there is an equivalent one in normal form. In this note, we show that this conjecture is false. In fact, we show that any class of formulas for which V is complete must be strictly less expressive than full first-order logic. Moreover, in the propositional case it is very unlikely that a formula always has a polynomial-size normal form.


10.29007/ltkk ◽  
2018 ◽  
Author(s):  
Evgenii Kotelnikov ◽  
Laura Kovács ◽  
Martin Suda ◽  
Andrei Voronkov

Automated theorem provers for first-order logic usually operate on sets of first-order clauses. It is well-known that the translation of a formula in full first-order logic to a clausal normal form (CNF) can crucially affect performance of a theorem prover. In our recent work we introduced a modification of first-order logic extended by the first class boolean sort and syntactical constructs that mirror features of programming languages. We called this logic FOOL. Formulas in FOOL can be translated to ordinary first-order formulas and checked by first-order theorem provers. While this translation is straightforward, it does not result in a CNF that can be efficiently handled by state-of-the-art theorem provers which use superposition calculus. In this paper we present a new CNF translation algorithm for FOOL that is friendly and efficient for superposition-based first-order provers. We implemented the algorithm in the Vampire theorem prover and evaluated it on a large number of problems coming from formalisation of mathematics and program analysis. Our experimental results show an increase of performance of the prover with our CNF translation compared to the naive translation.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


Sign in / Sign up

Export Citation Format

Share Document