Relationship between δ18O and minor element composition of Terebratalia transversa

Author(s):  
Maggie Cusack ◽  
David Parkinson ◽  
Alberto Pérez-Huerta ◽  
Jennifer England ◽  
Gordon B. Curry ◽  
...  

ABSTRACTWith their extensive fossil record and shells of stable low-Mg calcite, rhynchonelliform brachiopods are attractive sources of climate information via seawater temperature proxies such as stable oxygen isotope composition. In Terebratalia transversa (Sowerby) there is a progression towards oxygen isotope equilibrium in the calcite of the innermost secondary layer. This study confirms the lack of any vital effects influencing oxygen isotope composition of T. transversa, even in specialised areas of the innermost secondary layer. Calcite Mg/Ca ratio is another potential seawater temperature proxy, that has the advantage of not being influenced by salinity. Mg concentrations measured by electron microprobe analyses indicate that there is no concomitant decrease in Mg concentration towards the inner secondary layer, associated with the progressive shift towards oxygen isotope equilibrium. Mg distribution is heterogeneous throughout the shell and correlates with that of sulphur, which may be a proxy for organic components, suggesting that some of the Mg may not be in the calcite lattice. It is essential therefore, to determine the chemical environment of the magnesium ions to avoid any erroneous temperature extrapolations in brachiopods or any other calcite biomineral.

2008 ◽  
Vol 72 (1) ◽  
pp. 239-242 ◽  
Author(s):  
M. Cusack ◽  
A. Pérez-Huerta ◽  
P. Chung ◽  
D. Parkinson ◽  
Y. Dauphin ◽  
...  

With their long geological history and stable low-Mg calcite shells, Rhynchonelliform brachiopods are attractive sources of environmental data such as past seawater temperature (Buening and Spero, 1996; Auclair et al., 2003; Brand et al., 2003; Parkinson et al., 2005). Concerns about the influence of vital effects on the stable isotope composition of brachiopod shells (Popp et al., 1986), led to isotope analyses of different parts of brachiopod shells in order to identify those parts of the shell that are influenced by any vital effect and those parts that may be suitable recorders of seawater temperature via stable oxygen isotope composition (Carpenter and Lohmann, 1995; Parkinson et al., 2005). Such detailed studies demonstrated that the outer primary layer of acicularcalcite is isotopically light in both δ18O and δ13C while the secondary layer, composed of calcite fibres, is in oxygen-isotope equilibrium with ambient seawater(Fig. 1) (Parkinson et al., 2005).


2017 ◽  
Vol 454 ◽  
pp. 25-37 ◽  
Author(s):  
Sen Yang ◽  
Mingjun Zhang ◽  
Shengjie Wang ◽  
Yangmin Liu ◽  
Fang Qiang ◽  
...  

2020 ◽  
Author(s):  
Manuel F. G. Weinkauf ◽  
Jeroen Groeneveld ◽  
Joanna Waniek ◽  
Torsten Vennemann ◽  
Martini Rossana

2007 ◽  
Vol 34 (2) ◽  
pp. 83 ◽  
Author(s):  
Margaret M. Barbour

With the development of rapid measurement techniques, stable oxygen isotope analysis of plant tissue is poised to become an important tool in plant physiological, ecological, paleoclimatic and forensic studies. Recent advances in mechanistic understanding have led to the improvement of process-based models that accurately predict variability in the oxygen isotope composition of plant organic material (δ18Op). δ18Op has been shown to reflect the isotope composition of soil water, evaporative enrichment in transpiring leaves, and isotopic exchange between oxygen atoms in organic molecules and local water in the cells in which organic molecules are formed. This review presents current theoretical models describing the influences on δ18Op, using recently published experimental work to outline strengths and weaknesses in the models. The potential and realised applications of the technique are described.


Sign in / Sign up

Export Citation Format

Share Document