Analysis and mitigation of phase noise and sampling jitter in OFDM radio receivers

2010 ◽  
Vol 2 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Ville Syrjälä ◽  
Mikko Valkama

This article addresses the analysis and digital signal processing (DSP)-based mitigation of phase noise and sampling clock jitter in orthogonal frequency division multiplexing (OFDM) radios. In the phase noise studies, the basic direct-conversion receiver architecture case is assumed with noisy downconverting oscillator. In the sampling jitter case, on the other hand, the so-called direct-radio-frequency-sampling receiver architecture is deployed utilizing bandpass sub-sampling principle. The basis for the DSP-based impairment mitigation techniques is first formed using analytical receiver modeling with incoming OFDM waveform, where the effects of both oscillator phase noise and sampling clock jitter are mapped to certain type subcarrier cross-talk and distortion compared to ideal receiver case. Then iterative detection principles and interpolation techniques are developed to essentially estimate and cancel the subcarrier distortion. Also some related practical aspects, like channel estimation, are addressed. The performance of the proposed mitigation techniques is analyzed and verified with extensive computer simulations. In the simulations, realistic phase-locked-loop-based oscillator models are used for phase noise and sampling clock jitter. In addition, different received signal conditions like plain additive white Gaussian noise channel and extended ITU-R Vehicular A multipath channel are considered for practical purposes. Altogether the obtained results indicate that the effects of oscillator and sampling clock instabilities can be efficiently reduced using the developed signal processing techniques.

2016 ◽  
Vol 5 (3) ◽  
pp. 50 ◽  
Author(s):  
M. Shah ◽  
S. Gupta

Direct Conversion Receiver is the choice of the today’s designer for low power compact wireless receiver. DCR is attractive due to low power, small size and highly monolithic integratable structure, but distortions affect its performance.  I/Q mismatch is the one of the major distortion which is responsible for performance degradation.  In this paper, a novel method for Direct Conversion Receiver is suggested, which makes it insensitive to the I/Q mismatch. Here the classical homodyne architecture is modified to nullify effect of I/Q mismatch. The proposed method can be implemented in the Digital Signal Processing (DSP) back-end section also.  This feature makes it acceptable in the already designed/functioning classical homodyne architecture based receiver.


2014 ◽  
Vol 989-994 ◽  
pp. 2024-2028
Author(s):  
Ye Xing ◽  
Lu Zhang ◽  
Zhe Yuan Cheng ◽  
Kai Gu

In order to use minimal cost to compensate signal distortion caused by fiber dispersion and carrier phase noise etc, this paper mainly puts forward 2 different self-adaption compensation algorithms in algorithm part of digital signal processing, through test and comparative analysis, it indicates that the performance of the best matching and the nature expression based on GCT is the best.


2015 ◽  
Author(s):  
Miguel Iglesias Olmedo ◽  
Xiaodan Pang ◽  
Richard Schatz ◽  
Darko Zibar ◽  
Idelfonso Tafur Monroy ◽  
...  

Author(s):  
Arsyad Ramadhan Darlis

In 1992, Wornell and Oppenheim did research on a modulation which is formed by using wavelet theory. In some other studies, proved that this modulation can survive on a few channels and has reliability in some applications. Because of this modulation using the concept of fractal, then it is called as fractalmodulation. Fractal modulation is formed by inserting information signal into fractal signals that are selffractal similary. This modulation technique has the potential to replace the OFDM (Orthogonal Frequency Division Multiplexing), which is currently used on some of the latest telecommunication technologies. The purpose of this research is to implement the fractal communication system using Digital Signal Processing Starter Kit (DSK) TMS320C6713 without using AWGN and Rayleigh channel in order to obtain the ideal performance of the system. From the simulation results using MATLAB7.4. it appears that this communication system has good performance on some channels than any other communication systems. While in terms of implementation by using (DSK) via TMS320C6713 Code Composer Studio (CCS), it can be concluded that thefractal communication system has a better execution time on some tests.


Author(s):  
Виктория Владимировна Науменко ◽  
Алексей Сергеевич Рубель ◽  
Александр Владимирович Тоцкий ◽  
Валерий Борисович Шаронов

In a number of practical applications of digital signal processing, the process under study may include correlated spectral components or phase coupling. Extracting the phase relationships provides very important and useful information for the correct understanding, analysis, and description of the properties of physical phenomena generating these processes. However, such information is irretrievably lost when using classical methods of signal processing using energy statistics, i.e. second-order statistics. Obtaining estimates of signal parameters and analyzing them using third-order correlation functions and bispectrum makes it possible to learn much more about signal properties than when using conventional correlation functions. Estimating the bispectral density (third order spectral density), in contrast to estimating the energy spectrum, makes it possible not only to describe the characteristics of the observed process correctly, but also to preserve and, if necessary, extract the phase characteristics of the component, which includes the observed process. Therefore, in a number of applied tasks of telecommunications, as well as tasks of image processing and other bisection analysis, often serves as an effective tool of signal processing. The aim of the article is to study the feasibility of using a recursive algorithm when restoring a waveform and image by bispectrum in the noise environment. The following types of signals were selected for the study: rectangular, triangular, Gaussian impulses and signal-triplet. They were distorted with additive white Gaussian noise Test image was distorted by additive white Gaussian, pulsed, Poisson and multiplicative noises. Analysis of the signal recovery results indicates that as the noise power increases, the quality of the recovery decreases. The effect of random signal shift does not affect the shape of the recovered signal. Analysis of the image recovery results indicates image recovery, but this algorithm introduces distortions in the form of an offset


2008 ◽  
Vol 57 (10) ◽  
pp. 2098-2107 ◽  
Author(s):  
L. Angrisani ◽  
R. Schiano Lo Moriello ◽  
M. D'Arco ◽  
C.A. Greenhall

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 921 ◽  
Author(s):  
David Zabala-Blanco ◽  
Marco Mora ◽  
Cesar A. Azurdia-Meza ◽  
Ali Dehghan Firoozabadi

Radio-over-fiber (RoF) orthogonal frequency division multiplexing (OFDM) systems have been revealed as the solution to support secure, cost-effective, and high-capacity wireless access for the future telecommunication systems. Unfortunately, the bandwidth-distance product in these schemes is mainly limited by phase noise that comes from the laser linewidth, as well as the chromatic fiber dispersion. On the other hand, the single-hidden layer feedforward neural network subject to the extreme learning machine (ELM) algorithm has been widely studied in regression and classification problems for different research fields, because of its good generalization performance and extremely fast learning speed. In this work, ELMs in the real and complex domains for direct-detection OFDM-based RoF schemes are proposed for the first time. These artificial neural networks are based on the use of pilot subcarriers as training samples and data subcarriers as testing samples, and consequently, their learning stages occur in real-time without decreasing the effective transmission rate. Regarding the feasible pilot-assisted equalization method, the effectiveness and simplicity of the ELM algorithm in the complex domain are highlighted by evaluation of a QPSK-OFDM signal over an additive white Gaussian noise channel at diverse laser linewidths and chromatic fiber dispersion effects and taking into account several OFDM symbol periods. Considering diverse relationships between the fiber transmission distance and the radio frequency (for practical design purposes) and the duration of a single OFDM symbol equal to 64 ns, the fully-complex ELM followed by the real ELM outperform the pilot-based correction channel in terms of the system performance tolerance against the signal-to-noise ratio and the laser linewidth.


Sign in / Sign up

Export Citation Format

Share Document