A carbon-nanotube-based frequency-selective absorber

2010 ◽  
Vol 2 (5) ◽  
pp. 479-485 ◽  
Author(s):  
Ugo F. D'Elia ◽  
Giuseppe Pelosi ◽  
Stefano Selleri ◽  
Ruggero Taddei

A recently developed material based on carbon nanotubes is used here for the realization of single- and double-layered frequency-selective surfaces (FSSs) with relevant absorbing properties. The peculiar characteristics of carbon nanotubes are exploited to devise high-loss resonant ring structures periodically arranged to build the FSS. By introducing two layers of rings, an absorber with stable characteristics over a wide frequency band and over a wide range for the incident wave angle is achieved.

2008 ◽  
Vol 23 (5) ◽  
pp. 1457-1465 ◽  
Author(s):  
Jining Xie ◽  
Shouyan Wang ◽  
L. Aryasomayajula ◽  
V.K. Varadan

The effect of nanomaterials in platinum-decorated, multiwalled, carbon nanotube-based electrodes for amperometric glucose sensing was investigated by a comparative study with other carbon material-based electrodes such as graphite, glassy carbon, and multiwalled carbon nanotubes. Scanning and transmission electron microscopy and x-ray diffraction were used to investigate their morphologies and crystallinities. Electrochemical impedance spectroscopy was conducted to compare the electrochemical characteristics of these electrodes. The glucose-sensing results from the chronoamperometric measurements indicated that carbon nanotubes improve the linearity of the current response to glucose concentrations over a wide range, and that platinum decoration of the carbon nanotubes produces improved electrochemical performance with a higher sensitivity.


2021 ◽  
Vol 001 (02) ◽  
Author(s):  
Jayendrakumar Patel ◽  
Shalin Parikh ◽  
Shwetaben Patel ◽  
Ronak Patel ◽  
Payalben Patel

It is well acknowledged that carbon nanotubes (CNTs) are a potential new class of nanomaterials for technological advancement. The recent discovery of diverse kinds of carbon nanostructures has sparked interest in the potential applications of these materials in a variety of disciplines. Numerous distinct carbon nanotube (CNT) production methods have been developed, and their characterisation, separation, and manipulation of individual CNTs are now possible. Structure, surface area, surface charge, size distribution, surface chemistry, aggregation state, and purity of the samples all have a significant impact on the reactivity of carbon nanotubes, as does the purity of the samples. Currently, carbon nanotubes (CNTs) are being successfully used in the medicinal, pharmaceutical, and biomedical fields because of their large surface area, which makes them capable of adsorbing or conjugating with a wide range of therapeutic and diagnostic substances (drugs, genes, vaccines, antibodies, biosensors, etc.). They were the first to demonstrate that they are a great vehicle for drug delivery straight into cells without the need for metabolic processing by the body. This paper discusses the different types, structures, and properties of CNTs, as well as CNT synthesis and purification methods, how to functionalize CNTs, and their application in medicinal, pharmaceutical, and biomedical fields, toxicological properties and their assessment, as well as in-vivo pharmacology and biodegradation pathways.


2020 ◽  
Vol 20 (7) ◽  
pp. 4549-4556
Author(s):  
Laura Fazi ◽  
Daniele Mirabile Gattia ◽  
Luigi Pavone ◽  
Anna Prioriello ◽  
Valerio Scacco ◽  
...  

To meet the increasing demand, for stretchable conductive materials in a wide range of applications, innovative conductors based on single wall carbon nanotubes (SWCNT) self-grafted on different polymer films, are assembled. Aiming at a simple technology for flexible and stretchable electronic devices, and contrary to what commonly reported for carbon nanotubes (CNT), no chemical functionalization of SWCNT is necessary for stable grafting onto several polymeric surfaces. The novelty and functionality of our composite materials stand in the synergy among the intrinsic biocompatibility of CNT, a fully inert material, their electrical conductivity, and the stretchable-viscoelastic properties of the polymer-nanotube bundles composites. Electrical characterization of both unstretched and strongly stretched planar film conductors is provided, demonstrating the use of this new composite material for technological application. Also, an insight into the mechanisms of strong adhesion to the polymer is obtained by scanning electron microscopy (SEM) of the surface composite. As an example of technological application of such stretchable circuitry, the electrical functionality of a carbon nanotube-based six-sensor (electrode) grid is used to record subdural electrocorticograms in freely-moving laboratory rats over approximately three months.


Sign in / Sign up

Export Citation Format

Share Document