A compact band-notched antenna with high isolation for UWB MIMO applications

Author(s):  
Issmat Shah Masoodi ◽  
Insha Ishteyaq ◽  
Khalid Muzaffar ◽  
M. Idrees Magray

Abstract A compact antenna module with a single band notch at wireless local area network (WLAN) (5.725–5.825 GHz) for ultra-wideband (UWB) multiple input multiple output (MIMO) applications is proposed. Proposed antenna which acquires size of 0.299 λ × 0.413 λ × 0.005 λ mm3 at 3.1 GHz consists of two symmetrical radiators placed side by side on global merchandise link (GML) 1000 substrate (εr = 3.2, tan δ = 0.004). Isolation between the antenna elements is >18 dB in the whole UWB band, which is achieved by introducing the vertical stub and H-slot between the monopole radiators in the ground plane. The simulated and measured results of the antenna system are in good agreement. The proposed antenna covers entire UWB with impedance bandwidth (|S11| < −15 dB) from 3.1 to 11 GHz except at WLAN notched band. The designed antenna module bears low envelope correlation coefficient and minimal multiplexing efficiency hence fulfilling criteria suitable for various wireless MIMO applications.

2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2015 ◽  
Vol 9 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Murli Manohar ◽  
Rakhesh Singh Kshetrimayum ◽  
Anup Kumar Gogoi

In this paper, a band-notched compact printed monopole super wideband (SWB) antenna has been designed and fabricated. The SWB antenna composed of a radiating patch with a 50 Ω triangular tapered feed line which is connected through a feed region, and a chamfered ground plane (CGP), that covers the frequency band from 0.9–100 GHz (ratio bandwidth of 111.1:1) with a reflection coefficient |S11| < −10 dB, except in the notched band of 4.7–6 GHz for Wireless local area network IEEE 802.11a and HIPERLAN/2 WLAN band. To realize the band notch characteristics a C-shape parasitic element is employed near the CGP etched with two symmetrical L-slots and placed under the radiating patch. Proposed antenna structure occupies a relatively small space (30 × 40 × 0.787 mm3) and achieved much wider impedance bandwidth as well as higher gain compared with the existing ultra wideband and SWB antennas.


Author(s):  
Kirti Vyas ◽  
Rajendra Prasad Yadav

Abstract This communication reports significant isolation improvement utilizing planar suspended line (PSL) technique in ultra wideband (UWB) antenna for Multiple Input Multiple Output (MIMO) application. The antenna exhibits dual-band notched characteristic in Wireless Local Area Network (WLAN) band covering 5.45–5.85 GHz range; and in 7.15–7.95 GHz range for X-band downlink operations in satellite communication. Band-notching characteristics have been obtained by employing a single Elliptical Split Ring Resonator (ESSR) placed adjacent to each microstrip feed line of the radiating element and duo of “Y”-shaped strips employed within the circular ring of individual radiating elements. Two elements antenna occupy a compact space of 20 × 36 × 1.6 mm3 exhibiting huge measured impedance bandwidth (S11/S22 < −10 dB) covering 3.1–11.5 GHz and significant isolation of >21 dB in the almost entire band of operation. The electrical performance of antennas has been analyzed in terms of various MIMO parameters. Measured results demonstrate good accord with simulated results proving the competency of proposed antenna in high-density package systems and massive MIMO applications.


2013 ◽  
Vol 347-350 ◽  
pp. 1695-1698 ◽  
Author(s):  
Wen Li ◽  
Jun Jun Wang ◽  
Yan Chao Sun ◽  
Xian Chao Meng

A compact and simple ultra-wideband microstrip-fed planar antenna with double bandstop characteristic is presented. The antenna consists of a rectangular monopole and two W-shaped slots inserted into the radiating patch and the truncated ground plane. By using a W-shaped slot defected ground structure (DGS) in the feedline, a stopband of 800 MHz (from 5.1 to 5.9 GHz) for band rejection of wireless local area network (WLAN) is achieved. To obtain the other stopband (from 3.7-4.4 GHz), a same shaped slot is etched into the monopole. Moreover, the two stopbands can be controlled by adjusting the length of the slot respectively. The simulation results show that the designed antenna, with a compact size of 38.5 mm×42.5 mm, has an impedance bandwidth of 2.811 GHz for voltage standing wave ratio (VSWR) less than 2, besides two frequency stopbands of 3.74.4 GHz and 5.15.9 GHz. Moreover, the main features including omnidirectional H-plane radiation patterns and the appropriate impedance characteristic are achieved by beveling the radiating patch and the microstrip-fed line of the proposed antenna.


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


2017 ◽  
Vol 9 (10) ◽  
pp. 1983-1989
Author(s):  
Chen-Yang Shuai ◽  
Guang-Ming Wang ◽  
Ya-Wei Wang

A novel uniplanar wideband magneto-electric dipole antenna element is proposed in this paper. The proposed antenna is composed of the conventional bow-tie radiation patch as an electric dipole, a semi-circular loop, which works as a magnetic dipole, a coplanar ground plane, two directors with different lengths for enhancing gain, and a microstrip-to-coplanar stripline transition balun. The designed antenna adopts a small-size coplanar ground plane to achieve a uniplanar structure. Consequently, this method reduces the space size immensely and makes the antenna suitable for the array application. In addition, a tapered slot structure is utilized to improve impedance matching. The prototype of the proposed antenna was fabricated and measured. The measured results keep in good accordance with the simulated ones. The simulated results show that the proposed antenna obtains a broad impedance bandwidth of 60.5% from 2.25 to 4.20 GHz (voltage standing wave ratio [VSWR] ≤ 2) which can be applied for wireless local area network (WLAN) (2.4–2.484 GHz), worldwide interoperability for microwave access (WiMAX) (2.5–2.69/3.4–3.69 GHz), and long term evolution (LTE) (2.5–2.69 GHz). Meanwhile, the stable gain, low cross-polarization, stable unidirectional radiation patterns, and low back lobe are obtained within the operating frequency band. The array composed of the proposed antenna elements is also investigated in this paper.


2015 ◽  
Vol 8 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Raghupatruni Venkatsiva Ram Krishna ◽  
Raj Kumar ◽  
Nagendra Kushwaha

In this paper, a microstrip fed, L-shape slot antenna for dual polarization is proposed. The two arms of the slot generate electric fields of orthogonal polarizations. By properly sectioning the slot and the feed line, ultra wideband (UWB) behavior is obtained. The measured impedance bandwidth (S11< −10 dB) is more than 8.6 GHz (112%) and 8.2 GHz (104%) for Port 1 and Port 2, respectively. The measured isolation is better than 25 dB over most of the band. The aperture field distribution justifies the dual polarized nature. A modified version which implements a band-notch over 5.1–5.85 GHz wireless local area network (WLAN) band is also presented. With a compact, single substrate design, the antenna can be useful in MIMO transmission systems, polarimetric UWB radar, high performance microwave imaging, and other future wireless communications devices.


2014 ◽  
Vol 8 (2) ◽  
pp. 277-281 ◽  
Author(s):  
Tang Yang ◽  
Gao Wen ◽  
Gao Jinsong ◽  
Feng Xiaoguo

In this paper a novel compact multi-band printed coplanar waveguide (CPW)-feed antenna for wireless local area network (WLAN)/WiMAX/RFID applications is proposed. The proposed antenna is composed of a multi-triangular structure as metal ground plane and the radiation element with four different branches, both of the structures are printed on the same side of a substrate and the antenna is fed by a CPW. By carefully tuning the locations and the sizes of these four branches, the antenna can yield three different resonating frequencies to cover the desired bands for WLAN/WiMAX/RFID applications. The simulated and measured results demonstrate that the proposed antenna has the impedance bandwidth (for return loss less than −10 dB) of 700 MHz (2.2−2.9 GHz), 540 MHz (3.16–3.7 GHz), and 850 MHz (5.05–5.9 GHz), respectively, which can cover the WLAN 2.4/5.8 GHz bands, the WiMAX 2.5/3.5 GHz bands, and the RFID 2.45/5.8 GHz bands.


2018 ◽  
Vol 7 (5) ◽  
pp. 26-30
Author(s):  
M. Harbadji ◽  
A. Boufrioua ◽  
T. A. Denidni

This paper presents a novel compact coplanar waveguide (CPW) monopole fractal-shaped antenna using fractal patch composed of hexagons with defected ground plane. Inclusion of a pair of S-shaped slots on the ground plane is used to  extend the antenna impedance bandwidth and to provide multiband operation. The antenna has a compact size of 35×35×1.27 mm3 which is compact. The antenna is designed, fabricated and measured. Good performances in terms of return loss, gain and radiation pattern are obtained in the  operating bands, which makes the proposed antenna a good  candidate for multiband wireless systems. The obtained results show that the antenna operates at Bluetooth,Worldwide Interoperability for Microwave Access (WiMAX), and Wireless Local Area Network (WLAN).


2015 ◽  
Vol 9 (2) ◽  
pp. 427-436 ◽  
Author(s):  
Rajarshi Sanyal ◽  
Abhirup Patra ◽  
Parthapratim Sarkar ◽  
Santosh Kumar Chowdhury

This paper presents the dual band notch characteristics of Ultra wideband (UWB) monopole antenna. Proposed antenna (30 × 30 mm2) consists of arrow shaped patch and truncated ground plane. Operating range of the proposed antenna (voltage standing wave ratio < 2) is 2.2–11 GHz. In order to achieve dual band stop characteristics, λ/2 open ended angularly separated slit pair has been inserted on the radiator for world interoperability for microwave access (WIMAX) (3.3–3.9 GHz) band rejection performance and wireless local area network (WLAN) (5.1–5.9 GHz) band rejection has been realized by introducing a pair of angularly separated λ/2 conductor backed plane (CBP). Using proper adjustment of angular separation for both slit pair and CBP pair, enhanced band rejection can be achieved for the WIMAX and WLAN band, respectively. The performance of antenna has been investigated in terms of frequency domain and time domain to assess its suitability in UWB communication.


Sign in / Sign up

Export Citation Format

Share Document