An UWB dual polarized microstrip fed L-shape slot antenna

2015 ◽  
Vol 8 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Raghupatruni Venkatsiva Ram Krishna ◽  
Raj Kumar ◽  
Nagendra Kushwaha

In this paper, a microstrip fed, L-shape slot antenna for dual polarization is proposed. The two arms of the slot generate electric fields of orthogonal polarizations. By properly sectioning the slot and the feed line, ultra wideband (UWB) behavior is obtained. The measured impedance bandwidth (S11< −10 dB) is more than 8.6 GHz (112%) and 8.2 GHz (104%) for Port 1 and Port 2, respectively. The measured isolation is better than 25 dB over most of the band. The aperture field distribution justifies the dual polarized nature. A modified version which implements a band-notch over 5.1–5.85 GHz wireless local area network (WLAN) band is also presented. With a compact, single substrate design, the antenna can be useful in MIMO transmission systems, polarimetric UWB radar, high performance microwave imaging, and other future wireless communications devices.

2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1123 ◽  
Author(s):  
Zebiri ◽  
Sayad ◽  
Elfergani ◽  
Iqbal ◽  
Mshwat ◽  
...  

In this paper, a new miniaturized compact dual-band microstrip slot antenna is presented. To achieve the dual-band characteristics, two adjunct partial arc-shaped small slots are joined to two main circular slots embedded in the ground of the antenna structure. With a reduced size of 30 × 28.5 × 0.8 mm3, the proposed antenna presents a dual-band characteristic. The design is optimized using a High Frequency Structure Simulator (HFSS) followed by experimental verifications. An impedance bandwidth, for S11≤10 dB, that covers the 1.8 GHz and 2.4 GHz bands is accomplished, which makes the proposed antenna basically suitable for hand-held devices and medical applications. More applications such as digital communication system (DCS) 1.71–1.88 GHz, personal communication services (PCS) 1.85–1.99 GHz, Universal and mobile telecommunications system UMTS 1.92–2.17 GHz, Bluetooth 2.4–2.5 GHz, and Wi-Fi 2.4–2.454 GHz, Industrial Scientific and Medical radio frequency (RF) band ISM-2.4 GHz, Wireless Local Area Network (WLAN-2.4)are possible by simply changing one of the geometrical antenna dimensions. The antenna is characterized by stable radiation patterns as well.


2015 ◽  
Vol 9 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Murli Manohar ◽  
Rakhesh Singh Kshetrimayum ◽  
Anup Kumar Gogoi

In this paper, a band-notched compact printed monopole super wideband (SWB) antenna has been designed and fabricated. The SWB antenna composed of a radiating patch with a 50 Ω triangular tapered feed line which is connected through a feed region, and a chamfered ground plane (CGP), that covers the frequency band from 0.9–100 GHz (ratio bandwidth of 111.1:1) with a reflection coefficient |S11| < −10 dB, except in the notched band of 4.7–6 GHz for Wireless local area network IEEE 802.11a and HIPERLAN/2 WLAN band. To realize the band notch characteristics a C-shape parasitic element is employed near the CGP etched with two symmetrical L-slots and placed under the radiating patch. Proposed antenna structure occupies a relatively small space (30 × 40 × 0.787 mm3) and achieved much wider impedance bandwidth as well as higher gain compared with the existing ultra wideband and SWB antennas.


Author(s):  
Kirti Vyas ◽  
Rajendra Prasad Yadav

Abstract This communication reports significant isolation improvement utilizing planar suspended line (PSL) technique in ultra wideband (UWB) antenna for Multiple Input Multiple Output (MIMO) application. The antenna exhibits dual-band notched characteristic in Wireless Local Area Network (WLAN) band covering 5.45–5.85 GHz range; and in 7.15–7.95 GHz range for X-band downlink operations in satellite communication. Band-notching characteristics have been obtained by employing a single Elliptical Split Ring Resonator (ESSR) placed adjacent to each microstrip feed line of the radiating element and duo of “Y”-shaped strips employed within the circular ring of individual radiating elements. Two elements antenna occupy a compact space of 20 × 36 × 1.6 mm3 exhibiting huge measured impedance bandwidth (S11/S22 < −10 dB) covering 3.1–11.5 GHz and significant isolation of >21 dB in the almost entire band of operation. The electrical performance of antennas has been analyzed in terms of various MIMO parameters. Measured results demonstrate good accord with simulated results proving the competency of proposed antenna in high-density package systems and massive MIMO applications.


Author(s):  
Issmat Shah Masoodi ◽  
Insha Ishteyaq ◽  
Khalid Muzaffar ◽  
M. Idrees Magray

Abstract A compact antenna module with a single band notch at wireless local area network (WLAN) (5.725–5.825 GHz) for ultra-wideband (UWB) multiple input multiple output (MIMO) applications is proposed. Proposed antenna which acquires size of 0.299 λ × 0.413 λ × 0.005 λ mm3 at 3.1 GHz consists of two symmetrical radiators placed side by side on global merchandise link (GML) 1000 substrate (εr = 3.2, tan δ = 0.004). Isolation between the antenna elements is >18 dB in the whole UWB band, which is achieved by introducing the vertical stub and H-slot between the monopole radiators in the ground plane. The simulated and measured results of the antenna system are in good agreement. The proposed antenna covers entire UWB with impedance bandwidth (|S11| < −15 dB) from 3.1 to 11 GHz except at WLAN notched band. The designed antenna module bears low envelope correlation coefficient and minimal multiplexing efficiency hence fulfilling criteria suitable for various wireless MIMO applications.


2015 ◽  
Vol 8 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Majid Shokri ◽  
Vahid Rafii ◽  
Saeid Karamzadeh ◽  
Zhaleh Amiri ◽  
Bal Virdee

A compact CPW-fed printed monopole slot antenna is presented for ultra-wideband (UWB) applications. The antenna comprises of a dome-shaped radiating element in which embedded is an open-loop inverted triangular-shaped slot (TSS). The antenna is fed through a coplanar waveguide to provide an ultra-wide impedance bandwidth of 8.95 GHz (2.58–11.53 GHz) which corresponds to a bandwidth ratio of 1:4.46 for VSWR <2. The antenna possesses a notch band functionality to filter out interfering C-band signals like wireless local-area network (WLAN). The notch band frequency is determined by physical parameters defining the TSS that allows fine control of the notch's location. The proposed antenna also possesses a flat gain response expect at the notched band and occupies a relatively small volume of 25 × 25 × 0.8 mm3 for ease of system integration.


Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 325-332 ◽  
Author(s):  
Han Xu ◽  
Kai-Da Xu ◽  
Wei Nie ◽  
Yan-Hui Liu

Abstract A compact coplanar waveguide (CPW)-fed ultra-wideband (UWB) monopole antenna using embedded E-shaped structure with wireless local area network (WLAN) band-rejection is presented. The introduction of this E-shaped structure working as the radiator can enhance the impedance bandwidth of the UWB antenna without increasing the overall size. For preventing the interference from WLAN system, a pair of L-shaped stubs are connected to the ground of UWB antenna to create the rejected band. The center frequency of this rejected band is about 5.5 GHz with the rejection range of 5.2~5.8 GHz. Good agreement can be observed between the simulated and measured results.


2013 ◽  
Vol 347-350 ◽  
pp. 1695-1698 ◽  
Author(s):  
Wen Li ◽  
Jun Jun Wang ◽  
Yan Chao Sun ◽  
Xian Chao Meng

A compact and simple ultra-wideband microstrip-fed planar antenna with double bandstop characteristic is presented. The antenna consists of a rectangular monopole and two W-shaped slots inserted into the radiating patch and the truncated ground plane. By using a W-shaped slot defected ground structure (DGS) in the feedline, a stopband of 800 MHz (from 5.1 to 5.9 GHz) for band rejection of wireless local area network (WLAN) is achieved. To obtain the other stopband (from 3.7-4.4 GHz), a same shaped slot is etched into the monopole. Moreover, the two stopbands can be controlled by adjusting the length of the slot respectively. The simulation results show that the designed antenna, with a compact size of 38.5 mm×42.5 mm, has an impedance bandwidth of 2.811 GHz for voltage standing wave ratio (VSWR) less than 2, besides two frequency stopbands of 3.74.4 GHz and 5.15.9 GHz. Moreover, the main features including omnidirectional H-plane radiation patterns and the appropriate impedance characteristic are achieved by beveling the radiating patch and the microstrip-fed line of the proposed antenna.


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


Sign in / Sign up

Export Citation Format

Share Document