Developmental toxicant exposure in a mouse model of Alzheimer’s disease induces differential sex-associated microglial activation and increased susceptibility to amyloid accumulation

2017 ◽  
Vol 8 (4) ◽  
pp. 493-501 ◽  
Author(s):  
A. N. vonderEmbse ◽  
Q. Hu ◽  
J. C. DeWitt

As the resident macrophage of the central nervous system, microglia are thought to contribute to Alzheimer’s disease (AD) pathology through lack of neuroprotection. The role of immune dysfunction in AD may be due to disruption of regulatory signals for the activation of microglia that may occur early in development. We hypothesized that early toxicant exposure would systematically activate microglia, possibly reversing the pathological severity of AD. Offspring of a triple transgenic murine model for AD (3×TgAD) were exposed to a model neurotoxicant, lead acetate, from postnatal days (PND) 5–10. Our results indicated that female mice exposed to Pb had a greater and earlier incidence of amyloid burden within the hippocampus, coinciding with decreased markers of microglial activation at PND 50. Pb-exposed males had increased microglial activation at PND 50, as evidence by CD11b expression and microglial abundance, with no significant increase in amyloid burden at that time. There was greater amyloid burden at PND 90 and 180 in both male and female mice exposed to Pb compared with control. Together, these data suggest that activated microglia are neuroprotective against amyloid accumulation early in AD pathology, and that early exposure to Pb could increase susceptibility to later-life neurodegeneration. Likewise, females may be more susceptible to early-life microglial damage, and, subsequently, AD. Further investigation into the sex biased mechanisms by which microglial activation is altered by an early-life immune insult will provide critical insight into the temporal susceptibility of the developing neuroimmune system and its potential role in AD etiopathology.

2009 ◽  
Vol 5 (4S_Part_14) ◽  
pp. P422-P422
Author(s):  
M. Pizzi ◽  
A. Lanzillotta ◽  
B.P. Imbimbo ◽  
B. Hutter-Paier ◽  
G. Villetti ◽  
...  

2019 ◽  
Author(s):  
Stefania Zappettini ◽  
Emilie Faivre ◽  
Antoine Ghestem ◽  
Sébastien Carrier ◽  
Luc Buée ◽  
...  

AbstractPsychoactive drugs used during pregnancy can affect the development of the brain of offspring, directly triggering neurological disorders or increasing the risk for their occurrence. Caffeine is the most widely consumed psychoactive drug, including during pregnancy. In Wild type mice, early life exposure to caffeine renders offspring more susceptible to seizures. Here, we tested the long-term consequences of early life exposure to caffeine in THY-Tau22 transgenic mice, a model of Alzheimer’s disease-like Tau pathology. Caffeine exposed mutant offspring developed cognitive earlier than water treated mutants. Electrophysiological recordings of hippocampal CA1 pyramidal cells in vitro revealed that early life exposure to caffeine changed the way the glutamatergic and GABAergic drives were modified by the Tau pathology. We conclude that early-life exposure to caffeine affects the Tau phenotype and we suggest that caffeine exposure during pregnancy may constitute a risk-factor for early onset of Alzheimer’s disease-like pathology.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Rachel E. Lackie ◽  
Jose Marques-Lopes ◽  
Valeriy G. Ostapchenko ◽  
Sarah Good ◽  
Wing-Yiu Choy ◽  
...  

Abstract Molecular chaperones and co-chaperones, which are part of the protein quality control machinery, have been shown to regulate distinct aspects of Alzheimer’s Disease (AD) pathology in multiple ways. Notably, the co-chaperone STI1, which presents increased levels in AD, can protect mammalian neurons from amyloid-β toxicity in vitro and reduced STI1 levels worsen Aβ toxicity in C. elegans. However, whether increased STI1 levels can protect neurons in vivo remains unknown. We determined that overexpression of STI1 and/or Hsp90 protected C. elegans expressing Aβ(3–42) against Aβ-mediated paralysis. Mammalian neurons were also protected by elevated levels of endogenous STI1 in vitro, and this effect was mainly due to extracellular STI1. Surprisingly, in the 5xFAD mouse model of AD, by overexpressing STI1, we find increased amyloid burden, which amplifies neurotoxicity and worsens spatial memory deficits in these mutants. Increased levels of STI1 disturbed the expression of Aβ-regulating enzymes (BACE1 and MMP-2), suggesting potential mechanisms by which amyloid burden is increased in mice. Notably, we observed that STI1 accumulates in dense-core AD plaques in both 5xFAD mice and human brain tissue. Our findings suggest that elevated levels of STI1 contribute to Aβ accumulation, and that STI1 is deposited in AD plaques in mice and humans. We conclude that despite the protective effects of STI1 in C. elegans and in mammalian cultured neurons, in vivo, the predominant effect of elevated STI1 is deleterious in AD.


2015 ◽  
Vol 12 (1) ◽  
pp. 42 ◽  
Author(s):  
Lalida Rojanathammanee ◽  
Angela M Floden ◽  
Gunjan D Manocha ◽  
Colin K Combs

2013 ◽  
Vol 15 (5) ◽  
pp. 576-584 ◽  
Author(s):  
Boris von Reutern ◽  
Barbara Grünecker ◽  
Behrooz H. Yousefi ◽  
Gjermund Henriksen ◽  
Michael Czisch ◽  
...  

2016 ◽  
Vol 58 ◽  
pp. 191-200 ◽  
Author(s):  
Claire L. McDonald ◽  
Edel Hennessy ◽  
Ana Rubio-Araiz ◽  
Brian Keogh ◽  
William McCormack ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document