Associations Between Variants Near a Monoaminergic Pathways Gene (PHOX2B) and Amygdala Reactivity: A Genome-Wide Functional Imaging Study

2012 ◽  
Vol 15 (3) ◽  
pp. 273-285 ◽  
Author(s):  
Olga Therese Ousdal ◽  
Andrew Anand Brown ◽  
Jimmy Jensen ◽  
Per H. Nakstad ◽  
Ingrid Melle ◽  
...  

As the amygdala is part of the phylogenetic old brain, and its anatomical and functional properties are conserved across species, it is reasonable to assume genetic influence on its activity. A large corpus of candidate gene studies indicate that individual differences in amygdala activity may be caused by genetic variants within monoaminergic signaling pathways such as dopamine, serotonin, and norepinephrine. However, to our knowledge, the use of genome-wide data to discover genetic variants underlying individual differences in adult amygdala activity is novel. In the present study, the combination of genome-wide data and functional imaging phenotypes from an emotional faces task yielded a significant association between rs10014254 and the amygdala using a region of interest approach. This single nucleotide polymorphism is located in a regulatory region upstream of the Paired-like homeobox 2b (PHOX2B) gene; therefore it could affect the expression of this gene. PHOX2B regulates the expression of enzymes necessary for the synthesis of several monoamines and is essential for the development of the autonomic nervous system. However, an attempt to replicate the finding in an independent sample from North America did not succeed. The synthesis of functional magnetic resonance imaging (fMRI) and genome-wide data takes a hypothesis-free approach as to which genetic variants are of interest. Therefore, we believe that an undirected finding within such a plausible region is of interest, and that our results add further support to the hypothesis that monoaminergic signaling pathways play a central role in regulating amygdala activity.

2012 ◽  
Vol 2 (7) ◽  
pp. e143-e143 ◽  
Author(s):  
A A Brown ◽  
J Jensen ◽  
Y S Nikolova ◽  
S Djurovic ◽  
I Agartz ◽  
...  

2015 ◽  
Vol 240 (2) ◽  
pp. 462-467 ◽  
Author(s):  
Chuanhui Dong ◽  
David Della-Morte ◽  
Ashley Beecham ◽  
Liyong Wang ◽  
Digna Cabral ◽  
...  

Author(s):  
Wan-Yu Lin

Abstract Background Biological age (BA) can be estimated by phenotypes and is useful for predicting lifespan and healthspan. Levine et al. proposed a PhenoAge and a BioAge to measure BA. Although there have been studies investigating the genetic predisposition to BA acceleration in Europeans, little has been known regarding this topic in Asians. Methods I here estimated PhenoAgeAccel (age-adjusted PhenoAge) and BioAgeAccel (age-adjusted BioAge) of 94,443 Taiwan Biobank (TWB) participants, wherein 25,460 TWB1 subjects formed a discovery cohort and 68,983 TWB2 individuals constructed a replication cohort. Lifestyle factors and genetic variants associated with PhenoAgeAccel and BioAgeAccel were investigated through regression analysis and a genome-wide association study (GWAS). Results A unit (kg/m 2) increase of BMI was associated with a 0.177-year PhenoAgeAccel (95% C.I. = 0.163~0.191, p = 6.0×) and 0.171-year BioAgeAccel (95% C.I. = 0.165~0.177, p = 0). Smokers on average had a 1.134-year PhenoAgeAccel (95% C.I. = 0.966~1.303, p = 1.3×) compared with non-smokers. Drinkers on average had a 0.640-year PhenoAgeAccel (95% C.I. = 0.433~0.847, p = 1.3×) and 0.193-year BioAgeAccel (95% C.I. = 0.107~0.279, p = 1.1×) relative to non-drinkers. A total of 11 and 4 single-nucleotide polymorphisms (SNPs) were associated with PhenoAgeAccel and BioAgeAccel (p<5× in both TWB1 and TWB2), respectively. Conclusions A PhenoAgeAccel-associated SNP (rs1260326 in GCKR) and two BioAgeAccel-associated SNPs (rs7412 in APOE; rs16998073 near FGF5) were consistent with the finding from the UK Biobank. The lifestyle analysis shows that prevention from obesity, cigarette smoking, and alcohol consumption is associated with a slower rate of biological aging.


2020 ◽  
Vol 105 (12) ◽  
pp. 3854-3864
Author(s):  
Jin-Fang Chai ◽  
Shih-Ling Kao ◽  
Chaolong Wang ◽  
Victor Jun-Yu Lim ◽  
Ing Wei Khor ◽  
...  

Abstract Context Glycated hemoglobin A1c (HbA1c) level is used to screen and diagnose diabetes. Genetic determinants of HbA1c can vary across populations and many of the genetic variants influencing HbA1c level were specific to populations. Objective To discover genetic variants associated with HbA1c level in nondiabetic Malay individuals. Design and Participants We conducted a genome-wide association study (GWAS) analysis for HbA1c using 2 Malay studies, the Singapore Malay Eye Study (SiMES, N = 1721 on GWAS array) and the Living Biobank study (N = 983 on GWAS array and whole-exome sequenced). We built a Malay-specific reference panel to impute ethnic-specific variants and validate the associations with HbA1c at ethnic-specific variants. Results Meta-analysis of the 1000 Genomes imputed array data identified 4 loci at genome-wide significance (P < 5 × 10-8). Of the 4 loci, 3 (ADAM15, LINC02226, JUP) were novel for HbA1c associations. At the previously reported HbA1c locus ATXN7L3-G6PC3, association analysis using the exome data fine-mapped the HbA1c associations to a 27-bp deletion (rs769664228) at SLC4A1 that reduced HbA1c by 0.38 ± 0.06% (P = 3.5 × 10-10). Further imputation of this variant in SiMES confirmed the association with HbA1c at SLC4A1. We also showed that these genetic variants influence HbA1c level independent of glucose level. Conclusion We identified a deletion at SLC4A1 associated with HbA1c in Malay. The nonglycemic lowering of HbA1c at rs769664228 might cause individuals carrying this variant to be underdiagnosed for diabetes or prediabetes when HbA1c is used as the only diagnostic test for diabetes.


Sign in / Sign up

Export Citation Format

Share Document