Effects of Metribuzin Applied Lay-by on Weed Control and Sweetpotato Crop Response

2017 ◽  
Vol 31 (5) ◽  
pp. 689-693
Author(s):  
Stephen L. Meyers ◽  
Mark W. Shankle

Field studies were conducted at the Pontotoc Ridge-Flatwoods Branch Experiment Station in Pontotoc, MS in 2015 and 2016 to determine the influence of lay-by metribuzin application on weed control and sweetpotato crop response. With the exception of weedy and hand-weeded checks, all plots received flumioxazin at 107 gaiha−1pre-transplanting followed by (fb) clomazone at 1,120 gaiha−1immediately after transplanting. Lay-by treatments consisted ofS-metolachlor (800 gaiha−1), metribuzin (210 or 315 gaiha−1), metribuzin (210 gha−1) plus napropamide (1,120 gaiha−1), and metribuzin (210 gha−1) plusS-metolachlor (800 gha−1). At 4 weeks after transplanting, sweetpotato crop injury was 3 to 15%, but was transient and not evident after 6 (2015) to 8 weeks after transplanting (2016). Season-long weed control was excellent (≥98%) for all herbicide treatments used in the study. Hand-weeded check plots yielded 4,600; 18,350; 28,770; and 1,520 kgha−1of jumbo, No. 1, marketable, and cull grades, respectively. Jumbo, No. 1, and marketable yields from all herbicide-containing treatments in the study were greater than the weedy check and similar to the hand-weeded check. For all treatments, the portion of yield graded as cull was similar to the hand-weeded check. Canner yield response differed between years. In general, canner yield was greater in 2016 (8,460 to 10,670 kgha−1) than 2015 (1,570 to 3,570 kgha−1). In both years, canner yield in all treatments was similar to the hand-weeded check with one exception: in 2015 sweetpotato receiving metribuzin plus napropamide yielded more canners (3,570 kgha−1) than the hand-weeded check (2,300 kgha−1).

Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 105-110 ◽  
Author(s):  
William G. Johnson ◽  
Jeffrey S. Dilbeck ◽  
Michael S. DeFelice ◽  
J. Andrew Kendig

Field studies were conducted at three locations in 1993 and 1994 to evaluate weed control and crop response to metolachlor plus combinations of 0.5 × and 1 × label rates of imazaquin applied preplant and imazethapyr applied early postemergence or postemergence in no-till narrow-row soybean production. Giant foxtail, common ragweed, common cocklebur, and large crabgrass population reductions were greater with sequential preplant metolachlor plus imazaquin followed by early postemergence or postemergence imazethapyr than with preplant metolachlor plus imazaquin or early postemergence/postemergence imazethapyr alone. Ivyleaf morningglory was not effectively controlled by any herbicide program. Pennsylvania smartweed populations were reduced with all herbicide treatments. Soybean yields with treatments utilizing 0.5 × rates were usually equal to 1 × rates if imazethapyr was applied early postemergence or postemergence. Net income with reduced herbicide rates was equal to full-label rates and provided no greater risk to net income.


1999 ◽  
Vol 13 (1) ◽  
pp. 104-111 ◽  
Author(s):  
Lee R. Van Wychen ◽  
R. Gordon Harvey ◽  
Mark J. Vangessel ◽  
Thomas L. Rabaey ◽  
David J. Bach

Field studies were conducted at Arlington, WI, in 1996 and 1997 and at Georgetown, DE, and LeSueur, MN, in 1997 to determine weed control efficacy, crop injury, and yield response of PAT-transformed sweet corn to glufosinate-based weed management. Sequential applications of glufosinate 10 to 18 d apart at 0.4 and 0.3 kg ai/ha controlled common lambsquarters, common ragweed, velvetleaf, wild-proso millet, and fall panicum 90% or better at all locations. Weed control varied little among 0.3, 0.4, or 0.3 and 0.3 (sequential) kg/ha glufosinate rates. Glufosinate applied alone, with, or following atrazine controlled velvetleaf 90% or greater but was less consistent on common ragweed and common lambsquarters (73 to 100%). Atrazine plus metolachlor applied preemergence (PRE) and glufosinate applied alone postemergence (POST) provided inconsistent wild-proso millet and fall panicum control (43 to 99%). Metolachlor followed by glufosinate improved consistency of grass control (> 76%). Glufosinate followed by cultivation provided 80% or greater control of velvetleaf and wild-proso millet. Glufosinate did not injure or delay maturity of PAT-transformed sweet corn. Sweet corn treated with glufosinate resulted in yields greater than or equal to the sweet corn that was hand-weeded or received a standard herbicide treatment.


2017 ◽  
Vol 31 (6) ◽  
pp. 903-907 ◽  
Author(s):  
Stephen L. Meyers ◽  
Katherine M. Jennings ◽  
David W. Monks

Field studies were conducted in Clinton, NC in 2007 and 2009 to determine sweetpotato crop response and Palmer amaranth control with metribuzin and oryzalin. Treatments consisted of 140 and 202 g ai ha−1metribuzin applied immediately after transplanting [0 wk after transplanting (WAP)] or 2 WAP, 560 and 1121 g ha−1oryzalin 0 WAP, and tank mixes of metribuzin (140 or 202 g ha−1) and oryzalin (560 or 1,121 g ha−1) 0 WAP. At 2 WAP, metribuzin alone applied 0 WAP resulted in greater crop injury (33%) than oryzalin alone (1%), and the tank mix of metribuzin plus oryzalin resulted in greater crop injury (49%) than either herbicide applied alone. Greater crop injury occurred when metribuzin was applied at 202 g ha−1(54%) than 140 g ha−1(34%). Levels of injury were similar at 4 WAP (34, 8, and 52% for metribuzin, oryzalin, and the tank mix, respectively). At 4 WAP, injury from metribuzin was greater when it was applied 0 WAP (34%) compared to 2 WAP (18%). By 10 WAP, injury from metribuzin applied at 2 WAP was only 4%. At 4 WAP, Palmer amaranth control was excellent for all treatments and ≥98%. At 10 WAP, control among treatments ranged from 77% to 85%. Palmer amaranth control provided by metribuzin was similar for applications made 0 WAP (78%) and 2 WAP (77%). Oryzalin alone provided similar control (85%) to metribuzin alone 0 WAP, but greater control than the tank mix (77%). Neither metribuzin nor oryzalin rate differed in weed control provided at 10 WAP. Oryzalin 0 WAP and metribuzin 2 WAP provided no. 1 sweetpotato yields equivalent to the hand-weeded check. No. 1 yields of all other treatments were less than the hand-weeded check but greater than the weedy check.


2004 ◽  
Vol 18 (4) ◽  
pp. 968-976 ◽  
Author(s):  
Farzin Abdollahi ◽  
Hossein Ghadiri

Field studies were conducted to investigate the effects of different rates of herbicides on weed control, agronomic characteristics, and quality of sugar beet at Shiraz, Iran, in 2000 and 2001. Separate and combined applications of herbicides, including 14 combinations and different rates of grass and broadleaf herbicides, at two rates were used. Herbicides reduced weed biomass compared with the weedy check. In both years, maximum reduction in weed biomass was observed with desmedipham plus phenmedipham plus ethofumesate at 0.23 + 0.23 + 0.23 kg ai/ha and desmedipham plus phenmedipham plus propaquizafop at 0.46 + 0.46 + 0.1 kg ai/ha. Efficacy of grass herbicides was reduced when they were combined with pyrazon. Highest crop injury in both years was observed with desmedipham plus phenmedipham plus ethofumesate at 0.23 + 0.23 + 0.23 kg/ ha. Highest and lowest root yields in both years were produced in weed-free and weedy check plots, respectively. All herbicide treatments produced lower sugar beet yields than the hand-weeded check. Of the herbicide treatments evaluated, the highest sugar beet yields were with desmedipham plus phenmedipham plus propaquizafop at 0.46 + 0.46 + 0.1 kg/ha in 2001 and with desmedipham plus phenmedipham plus ethofumesate at 0.23 + 0.23 + 0.23 kg/ha in 2000. Sucrose content and other sugar beet brei characteristics were not affected by the herbicide treatments.


2019 ◽  
Vol 33 (6) ◽  
pp. 855-858
Author(s):  
Stephen L. Meyers ◽  
Mark W. Shankle ◽  
Trevor F. Garrett

AbstractField studies were conducted at the Pontotoc Ridge–Flatwoods Branch Experiment Station in Pontotoc, MS, in 2016 and 2017 to determine sweetpotato crop response to saflufenacil and rimsulfuron/thifensulfuron-methyl. Saflufenacil treatments consisted of a factorial of two rates (25 or 50 g ai ha–1) by three application timings [0, 3, or 6 wk before transplanting (WBP)]. Rimsulfuron/thifensulfuron-methyl treatments consisted of a factorial of two rates (18/18 or 35/35 g ai ha–1) by two application timings (3 or 6 WBP). A nontreated check was included for comparison. Saflufenacil resulted in as much as 20% stunting injury in 2016, but ≤4% crop injury in 2017. Compared to the nontreated check, saflufenacil did not reduce yield of any sweetpotato grade regardless of application rate or timing. Findings from this trial indicate that saflufenacil applied in pre-transplanting burndown and field preparation procedures did not have a negative impact on the subsequent sweetpotato crop and that the current plant-back interval (4 to 5 mo) may be excessive. Applications of rimsulfuron/thifensulfuron-methyl at 35/35 g ha–1 made 3 WBP resulted in significant crop injury but did not reduce yield of any sweetpotato grade. Findings from this trial suggest that rimsulfuron/thifensulfuron-methyl applications up to 35/35 g ha–1 applied at least 6 WBP and 18/18 g ha–1 applied at least 3 WBP had little impact on sweetpotato crop growth and may be a safe preplant burndown option.


2019 ◽  
Vol 34 (4) ◽  
pp. 498-505
Author(s):  
Tameka L. Sanders ◽  
Jason A. Bond ◽  
Benjamin H. Lawrence ◽  
Bobby R. Golden ◽  
Thomas W. Allen ◽  
...  

AbstractRice with enhanced tolerance to herbicides that inhibit acetyl coA carboxylase (ACCase) allows POST application of quizalofop, an ACCase-inhibiting herbicide. Two concurrent field studies were conducted in 2017 and 2018 near Stoneville, MS, to evaluate control of grass (Grass Study) and broadleaf (Broadleaf Study) weeds with sequential applications of quizalofop alone and in mixtures with auxinic herbicides applied in the first or second application. Sequential treatments of quizalofop were applied at 119 g ai ha−1 alone and in mixtures with labeled rates of auxinic herbicides to rice at the two- to three-leaf (EPOST) or four-leaf to one-tiller (LPOST) growth stages. In the Grass Study, no differences in rice injury or control of volunteer rice (‘CL151’ and ‘Rex’) were detected 14 and 28 d after last application (DA-LPOST). Barnyardgrass control at 14 and 28 DA-LPOST with quizalofop applied alone or with auxinic herbicides EPOST was ≥93% for all auxinic herbicide treatments except penoxsulam plus triclopyr. Barnyardgrass control was ≥96% with quizalofop applied alone and with auxinic herbicides LPOST. In the Broadleaf Study, quizalofop plus florpyrauxifen-benzyl controlled more Palmer amaranth 14 DA-LPOST than other mixtures with auxinic herbicides, and control with this treatment was greater EPOST compared with LPOST. Hemp sesbania control 14 DA-LPOST was ≤90% with quizalofop plus quinclorac LPOST, orthosulfamuron plus quinclorac LPOST, and triclopyr EPOST or LPOST. All mixtures except quinclorac and orthosulfamuron plus quinclorac LPOST controlled ivyleaf morningglory ≥91% 14 DA-LPOST. Florpyrauxifen-benzyl or triclopyr were required for volunteer soybean control >63% 14 DA-LPOST. To optimize barnyardgrass control and rice yield, penoxsulam plus triclopyr and orthosulfamuron plus quinclorac should not be mixed with quizalofop. Quizalofop mixtures with auxinic herbicides are safe and effective for controlling barnyardgrass, volunteer rice, and broadleaf weeds in ACCase-resistant rice, and the choice of herbicide mixture could be adjusted based on weed spectrum in the treated field.


1998 ◽  
Vol 12 (1) ◽  
pp. 32-36 ◽  
Author(s):  
William G. Johnson ◽  
Jeffrey S. Dilbeck ◽  
Michael S. Defelice ◽  
J. Andrew Kendig

Field studies were conducted at three locations in 1993 and 1994 to evaluate weed control and crop response to combinations of glyphosate, metolachlor, 0.5 X and 1 X label rates of chlorimuron plus metribuzin applied prior to planting (PP), and 0.5 X and 1 X label rates of imazethapyr applied early postemergence (EPOST) or postemergence (POST) in no-till narrow-row soybean production. Giant foxtail densities were reduced with sequential PP followed by (fb) EPOST or POST treatments. Large crabgrass was reduced equivalently with all herbicide combinations involving chlorimuron plus metribuzin PP fb imazethapyr. Common cocklebur control was variable but was usually greater with treatments that included imazethapyr. Ivyleaf morningglory densities were not reduced with any herbicide combinations. Sequential PP fb EPOST or POST treatments tended to provide slightly better weed suppression than PP-only treatments, but the difference was rarely significant. Soybean yields with treatments utilizing 0.5 X rates were usually equal to 1 X rates.


1998 ◽  
Vol 12 (3) ◽  
pp. 522-526 ◽  
Author(s):  
Theodore M. Webster ◽  
John Cardina ◽  
Mark M. Loux

The objectives of this study were to determine how the timing of weed management treatments in winter wheat stubble affects weed control the following season and to determine if spring herbicide rates in corn can be reduced with appropriately timed stubble management practices. Field studies were conducted at two sites in Ohio between 1993 and 1995. Wheat stubble treatments consisted of glyphosate (0.84 kg ae/ha) plus 2,4-D (0.48 kg ae/ha) applied in July, August, or September, or at all three timings, and a nontreated control. In the following season, spring herbicide treatments consisted of a full rate of atrazine (1.7 kg ai/ha) plus alachlor (2.8 kg ai/ha) preemergence, a half rate of these herbicides, or no spring herbicide treatment. Across all locations, a postharvest treatment of glyphosate plus 2,4-D followed by alachlor plus atrazine at half or full rates in the spring controlled all broadleaf weeds, except giant ragweed, at least 88%. Giant foxtail control at three locations was at least 83% when a postharvest glyphosate plus 2,4-D treatment was followed by spring applications of alachlor plus atrazine at half or full rates. Weed control in treatments without alachlor plus atrazine was variable, although broadleaf control from July and August glyphosate plus 2,4-D applications was greater than from September applications. Where alachlor and atrazine were not applied, August was generally the best timing of herbicide applications to wheat stubble for reducing weed populations the following season.


Weed Science ◽  
1993 ◽  
Vol 41 (3) ◽  
pp. 347-352 ◽  
Author(s):  
Glenn R. Wehtje ◽  
John W. Wilcut ◽  
John A. Mcguire

Mixtures of chlorimuron and 2,4-DB were additive with respect to crop injury and were either additive or slightly antagonistic with respect to weed control in greenhouse experiments. Absorption and translocation of14C following application of14C-chlorimuron and14C-2,4-DB were not affected by the presence of the other unlabeled herbicide, except in Florida beggarweed and peanut where 2,4-DB affected distribution of14C-chlorimuron in the treated leaf. In field studies, maximum efficacy was obtained with mixtures of chlorimuron plus 2,4-DB applied 7 or 9 wk after planting. Florida beggarweed control was greatest with chlorimuron or chlorimuron mixtures while the addition of 2,4-DB to chlorimuron improved morningglory and sicklepod control. At 9 and 11 wk after planting, addition of 2,4-DB to chlorimuron controlled Florida beggarweed better than chlorimuron alone. Peanut yields were increased by the addition of 2,4-DB at later applications.


1999 ◽  
Vol 13 (3) ◽  
pp. 484-488 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
F. Robert Walls

Field studies were conducted in 1992 and 1993 to evaluate AC 263,222 applied postemergence (POST) alone and as a mixture with atrazine or bentazon for weed control in imidazolinone-resistant corn. Nicosulfuron alone and nicosulfuron plus atrazine were also evaluated. Herbicide treatments were applied following surface-banded applications of two insecticides, carbofuran or terbufos at planting. Crop sensitivity to POST herbicides, corn yield, and weed control was not affected by insecticide treatments. AC 263,222 at 36 and 72 g ai/ha controlled rhizomatous johnsongrass 88 and 99%, respectively, which was equivalent to nicosulfuron applied alone or with atrazine. AC 263,222 at 72 g/ha controlled large crabgrass 99% and redroot pigweed 100%, and this level of control exceeded that obtained with nicosulfuron alone. AC 263,222 at 72 g/ha controlled sicklepod and morningglory species 99 and 98%, respectively. Nicosulfuron alone or with atrazine controlled these two species less than AC 263,222 at 72 g/ha. Addition of bentazon or atrazine to AC 263,222 did not improve control of any species compared with the higher rate of AC 263,222 at 72 g/ha applied alone. Corn yield increased over the untreated control when POST herbicide(s) were applied, but there were no differences in yield among herbicide treatments.


Sign in / Sign up

Export Citation Format

Share Document