scholarly journals Weed Control with and Strawberry Tolerance to Herbicides Applied through Drip Irrigation

2017 ◽  
Vol 31 (6) ◽  
pp. 870-876 ◽  
Author(s):  
Jialin Yu ◽  
Nathan S. Boyd

Broadleaves, grasses, and nutsedge species are persistent problems with limited management options for strawberry growers in Florida. Field experiments were conducted in 2015-2016 (year 1) and 2016-2017 (year 2) at the Gulf Coast Research and Education Center in Balm, FL, to evaluate weed control and strawberry tolerance to herbicides applied through the drip irrigation. 2940 g ai ha-1EPTC, 105 g ai ha-1flumioxazin, 570 g ai ha-1fomesafen, 52 g ai ha-1halosulfuron, 3585 g ai ha-1napropamide, oxyfluorfen 560 g ai ha-1, and 1070 g ai ha-1S-metolachlor were applied through a single drip tape at 7 or 14 d prior to transplanting. Halosulfuron was the most injurious herbicide, causing 18 and 46% injury at 35 d after transplanting (DATP) in year 1 when the herbicide was applied 7 and 14 d prior to transplanting, respectively. However, strawberry plants recovered from the initial injury and there was no reduction in total berry yield. None of the other herbicides evaluated elicited significant crop injury nor reduced berry yield. Averaged over application timings, EPTC, fomesafen, and napropamide suppressed yellow nutsedge emergence to 49, 64, and 41% of the nontreated control, respectively. Flumioxazin, fomesafen, and halosulfuron suppressed black medic emergence to 55, 52, and 55% of the nontreated control, respectively. None of the herbicides evaluated adequately suppressed Carolina geranium. Overall, results suggest that the evaluated herbicides with the exception of halosulfuron are safe for use on strawberry and would give growers an alternative management option. Drip-applied herbicides permit application closer to the transplant date and would be helpful as part of a weed control program for weed suppression.

HortScience ◽  
2022 ◽  
Vol 57 (2) ◽  
pp. 215-220
Author(s):  
Ravneet K. Sandhu ◽  
Laura E. Reuss ◽  
Nathan S. Boyd

Sulfentrazone was recently registered for use in tomato and strawberry in Florida. Field experiments were conducted at the Gulf Coast Research and Education Center in Wimauma, FL, to evaluate PRE sulfentrazone applications when applied on flat soil 30 days before bed formation (PRE-f), on the bed top immediately before laying plastic mulch (PRE-t), applied PRE-t as a tank mix with other PRE herbicides, or PRE-t followed by POST halosulfuron or rimusulfuron (POST). Sulfentrazone did not damage the tomato and strawberry crop and had no effect on strawberry and tomato fruit yield. It was as effective as the industry standards but none of the evaluated herbicide treatments provided adequate weed control. POST halosulfuron in tomato resulted in significantly greater nutsedge control at 11 (14%) and 13 (27%) weeks after initial treatment (WAIT) compared with other treatments in Fall 2019 and Spring 2020, respectively. However, in tomato, tank-mixing sulfentrazone with S-metolachlor or metribuzin did not enhance nutsedge control. Weed control did not improve with increased rates or with the use of PRE-f followed by (fb) PRE-t applications in tomato. PRE-t sulfentrazone fb POST halosulfuron was an efficient nutsedge management option in tomato. Sulfentrazone alone did not effectively control weeds in tomato or strawberry. Increased rates of sulfentrazone with the use of PRE-f fb PRE-t sulfentrazone applications did reduce (34%) total weed density in strawberry.


1996 ◽  
Vol 10 (1) ◽  
pp. 145-152 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
Daniel L. Colvin ◽  
Gerald R. Wiley

Field experiments conducted at four locations in Georgia and two locations in Florida during 1992 and 1993 evaluated AC 263,222 application rates and timings, systems, and mixtures for weed control, peanut injury, and yield. All rates of AC 263,222 applied early POST (EPOST) or POST controlledIpomoeamorningglories and smallflower morningglory at least 90%, and purple and yellow nutsedge at least 81%. Florida beggarweed and sicklepod control generally was highest when metolachlor was applied PPI followed by AC 263,222 applied EPOST at 71 g/ha, AC 263,222 at 27 or 36 g/ha plus bentazon plus paraquat applied POST, or with bentazon plus paraquat applied EPOST followed by AC 263,222 applied POST at 36 or 53 g/ha. Acifluorfen and acifluorfen plus bentazon reduced Florida beggarweed and sicklepod control at several locations when applied in mixture with AC 263,222. Common ragweed and hairy indigo control were 85 to 95% with bentazon plus paraquat applied EPOST followed by AC 263,222 applied POST at 36 or 53 g/ha. Highest peanut yields were obtained with treatments providing high levels of weed control.


Weed Science ◽  
2012 ◽  
Vol 60 (2) ◽  
pp. 244-253 ◽  
Author(s):  
Lauren N. Kolb ◽  
Eric R. Gallandt ◽  
Ellen B. Mallory

Effective in-season weed management options are limited for organic cereal farmers. Two alternatives to current farmer practices are improving efficacy of physical weed control through use of interrow cultivation or increasing the competitive ability of the crop through elevated seeding rates and more uniform spatial planting patterns. It is unknown how these two methods affect yield, quality, and economic returns. Field experiments were conducted in the northeast United States to determine whether the yield gain from increased weed control from these contrasting weed management strategies resulted in increased net returns and how these different systems affected grain quality. Wheat was planted at two seeding rates (400 and 600 plants m−2), in three row spacings (11, 18, and 23 cm). A fourth crop arrangement that approaches a more uniform spatial distribution through a combination of drilling and broadcasting seed was included. For weed control, treatments received tine harrowing. Wheat sown in wide rows also received interrow cultivation. Each system was sown in the presence and absence of condiment mustard, which was sown as a surrogate weed. Increased seeding rate reduced weed density 64% compared to a crop-free check and 30% compared to regional farmers' practices of 18-cm rows and 400 plants m−2. Increased seeding rates lowered grain protein 5% compared to standard seeding rates. Wide rows, in combination with interrow cultivation, reduced weed density 62%, increased yield 16%, and net returns 19% compared to regional organic practices. Significant increases in grain N were limited to weed-free plots. While increased seeding rates improved weed suppression, the high input cost of organic seed make this an unsatisfactory alternative to interrow cultivation and current farmer practices, as yield would need to be. 15 t ha−1higher at elevated density to offset the extra cost of seed.


2020 ◽  
Vol 34 (6) ◽  
pp. 834-842
Author(s):  
Caio A. C. G. Brunharo ◽  
Seth Watkins ◽  
Bradley D. Hanson

AbstractWeed control in tree nut orchards is a year-round challenge for growers that is particularly intense during winter through summer as a result of competition and interference with management and harvest operations. A common weed control program consists of an application of a winter PRE and POST herbicide mixture, followed by a desiccation treatment in early spring and before harvest. Because most spring and summer treatments depend on a limited number of foliar-applied herbicides, summer-germinating species and/or herbicide-resistant biotypes become troublesome. Previous research has established effective PRE herbicide programs targeting winter glyphosate-resistant weeds. However, more recently, growers have reported difficulties in controlling several summer-germinating grass weeds with documented or suspected resistance to the spring and summer POST herbicide programs. In this context, research was conducted to evaluate a sequential PRE approach to control winter- and summer-germinating orchard weeds. Eight field experiments were conducted in tree nut orchards to evaluate the efficacy of common winter herbicide programs and a sequential herbicide program for control of a key summer grass weed species. In the sequential-application strategy, three foundational herbicide programs applied in the winter were either mixed with pendimethalin, followed with pendimethalin in March, or applied as a split application of pendimethalin in both winter and spring. Results indicate that the addition of pendimethalin enhanced summer grass weed control throughout the crop growing season by up to 31%. Applying all or part of the pendimethalin in the spring improved control of the summer grass weed junglerice by up to 49%. The lower rate of pendimethalin applied in the spring performed as well as the high rate in the winter, suggesting opportunities for reducing herbicide inputs. Tailoring sequential herbicide programs to address specific weed challenges can be a viable strategy for improving orchard weed control without increasing herbicide use in some situations.


2020 ◽  
Vol 34 (4) ◽  
pp. 619-623
Author(s):  
Jialin Yu ◽  
Nathan S. Boyd

AbstractFlorida strawberry growers apply the nonselective herbicide paraquat for crop termination. Alternative herbicides are desirable because of recent label restrictions on paraquat use and the occurrence of three paraquat-resistant weed species found in strawberry fields. Field experiments were conducted at the Gulf Coast Research and Education Center at Balm, FL, to compare the efficacy of diquat, paraquat, and glufosinate and determine the optimal rate for strawberry termination. Peak control occurred at 14 d after treatment and strawberry foliage desiccation increased as herbicide rate increased. The highest rate of diquat (2,240 g ai ha−1) and paraquat (2240 g ai ha−1) provided 59% and 79% strawberry control, respectively, and 39% and 77% strawberry foliage desiccation, respectively. The highest rate of glufosinate (2,624 g ai ha−1) provided 82% and 84% strawberry control and desiccation, respectively. Regression analysis determined the rates required to provide 50% strawberry control measured 1,100, 650, and 550 g ha−1 for diquat, paraquat, and glufosinate, respectively, whereas the rates required to provide 80% strawberry control were greater than 2,240 g ha−1 for the first two herbicides and 2,020 g ha−1 for glufosinate. Herbicide rates required to provide 50% strawberry foliage desiccation measured 480, 550, and 330 g ha−1 for diquat, paraquat, and glufosinate, respectively, whereas the rates required to provide 80% strawberry foliage desiccation were greater than 2,240 g ha−1 for the first two herbicides and 1150 g ha−1 for glufosinate. Overall, these results indicate glufosinate is the most effective herbicide for strawberry termination, whereas diquat is the least effective herbicide.


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 350-359 ◽  
Author(s):  
Gulshan Mahajan ◽  
Vikas Poonia ◽  
Bhagirath S. Chauhan

Field experiments were conducted in Punjab, India, in 2011 and 2012 to study the integrated effect of planting pattern [uniform rows (20-cm spacing) and paired rows (15-, 25-, and 15-cm spacing)], cultivars (PR-115 and IET-21214), and weed control treatments (nontreated control, pendimethalin 750 g ai ha−1, bispyribac-sodium 25 g ai ha−1, and pendimethalin 750 g ha−1 followed by bispyribac-sodium 25 g ha−1) on weed suppression and rice grain yield in dry-seeded rice. In the nontreated control, IET-21214 had higher grain yield than PR-115 in both planting patterns. However, such differences were not observed within the herbicide treatment. IET-21214 in paired rows, even in nontreated control, provided grain yield (4.7 t ha−1) similar to that in uniform rows coupled with the sole application of pendimethalin (4.3 t ha−1) and bispyribac-sodium (5.0 t ha−1). In uniform rows, sequential application of pendimethalin (PRE) and bispyribac-sodium (POST) provided the highest grain yield among all the weed control treatments and this treatment produced grain yield of 5.9 and 6.1 t ha−1 for PR-115 and IET-21214, respectively. Similarly, in paired rows, PR-115 in paired rows treated with sequential application of pendimethalin and bispyribac-sodium had highest grain yield (6.1 t ha−1) among all the weed control treatments. However, IET-21214 with the sole application of bispyribac-sodium produced grain yield similar to the sequential application of pendimethalin and bispyribac-sodium. At 30 days after sowing, PR-115 in paired rows coupled with pendimethalin application accrued weed biomass (10.7 g m−2) similar to the sequential application of pendimethalin and bispyribac-sodium coupled with uniform rows (8.1 g m−2). Similarly, IET-21214 with bispyribac-sodium application provided weed control similar to the sequential application of pendimethalin and bispyribac-sodium. Our study implied that grain yield of some cultivars could be improved by exploring their competitiveness through paired-row planting patterns with less use of herbicides.


2020 ◽  
Vol 113 (5) ◽  
pp. 2310-2318
Author(s):  
Hugh A Smith

Abstract The sweetpotato whitefly, Bemisia tabaci MEAM1 Gennadius, is a global pest of tomato, transmitting Tomato yellow leaf curl virus (TYLCV). Management of B. tabaci is challenging in part because of its ability to develop resistance to insecticides. Biopesticides include materials that control B. tabaci via mechanisms that do not select for resistance. Field experiments were conducted in the spring and fall of 2016 and 2017 at the University of Florida’s Gulf Coast Research and Education Center in west central Florida to compare biopesticides to conventional insecticides for management of B. tabaci and TYLCV. Insecticide rotations were designed in part around the concept that conventional insecticide programs should group modes of action according to 5-wk treatment intervals, corresponding to an estimated 5-wk generation time for the pest. In 2016, when tomato was treated during the first 5-wk treatment interval with either biopesticides or neonicotinoid insecticides, insecticidal soap contributed to a reduction in whitefly egg numbers and percentage TYLCV that was comparable to results achieved with dinotefuran. In contrast, egg numbers and virus incidence in plants treated with kaolin clay tended to be numerically higher than the untreated control. In spring 2017, comparisons of biopesticides and conventional ovicides/nymphicides during the second 5-wk treatment interval showed that biopesticides can provide comparable reduction in nymph numbers to conventional insecticides. While data from these trials confirm that biopesticides can reduce numbers of whitefly eggs and nymphs, they indicate that season-long programs of the biopesticides evaluated may not reduce transmission of TYLCV below economically acceptable levels.


1995 ◽  
Vol 9 (4) ◽  
pp. 801-806 ◽  
Author(s):  
John S. Richburg ◽  
John W. Wilcut ◽  
Gerald L. Wiley

Field experiments conducted at three locations in Georgia during 1991 and 1992 evaluated AC 263,222 and imazethapyr rates alone at 18, 36, 54, or 72 g ai/ha and in mixture for a total of 36, 54, or 72 g/ha of herbicide applied early-POST for weed control, peanut injury, and yield. An application of AC 263,222 at 72 g/ha controlled (> 90%)Ipomoeamorningglories, sicklepod, smallflower morningglory, and yellow nutsedge in all experiments and coffee senna and Florida beggarweed at Chula in 1991. Bristly starbur was controlled at least 90% with AC 263,222 at 72 g/ha at Tifton in 1991, but less than 62% at Chula in 1991. Imazethapyr applied at 72 g/ha controlled coffee senna,Ipomoeamorningglories, and smallflower morningglory at least 85%, but did not control Florida beggarweed or sicklepod and provided inconsistent bristly starbur and yellow nutsedge control. Bristly starbur and yellow nutsedge control was increased with several AC 263,222 plus imazethapyr mixtures. High peanut yields comparable to the standard were indicative of the AC 263,222 rate applied whether alone or in mixture with imazethapyr.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1557
Author(s):  
Robert Martin ◽  
Bunna Som ◽  
Joel Janiya ◽  
Ratha Rien ◽  
Sophea Yous ◽  
...  

The objective of this work was to determine the value of improved establishment methods and herbicide applications as alternatives to high seeding rates to improve weed suppression in rice. Field experiments were carried out in 2010 and 2011 to determine optimal seeding rates and seeding methods with and without weed competition in wet-seeded rice. Under wet seeding conditions, drum seeding at 80 kg ha−1 was the most profitable treatment for both weed-free and unweeded rice. Although pre-emergence herbicides are beginning to be adopted in wet-seeded rice, they are seldom used in dry direct-seeded rice in Cambodia. Experiments were carried out in 2018 and 2019 to test crop tolerance and the efficacy of butachlor, oxadiazon, pendimethalin and pretilachlor applied post-sowing and pre-emergence to dry direct-seeded rice. Oxadiazon and butachlor, with the option for a post-emergence herbicide, provided effective weed control and a high grain yield in dry direct-seeded rice. Pretilachlor did not effectively control weeds under dry seeding conditions. Although pendimethalin exhibited good weed control, crop damage was a risk in poorly prepared seedbeds which typify Cambodian rice systems. With an effective integrated weed management strategy, it might be possible to safely reduce seeding rates below 80 kg ha−1 using drum or drill seeding machines.


1999 ◽  
Vol 26 (1) ◽  
pp. 23-28 ◽  
Author(s):  
W. J. Grichar ◽  
P. A. Dotray ◽  
D. C. Sestak

Abstract Field experiments were conducted in 1995 through 1997 in south and west Texas to evaluate diclosulam [N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro(1,2,4)-triazolo(1,5c)-pyrimidine-2-sulfonamide] for weed control in peanut. Diclosulam applied preplant incorporated at 0.01 kg ai/ha in combination with ethalfluralin at 0.84 kg ai/ha controlled Texas panicum, Palmer amaranth, morningglory species, and golden crownbeard at least 95% and devil's-claw 91%. When diclosulam rates were increased to 0.02 kg/ha, yellow and purple nutsedge were controlled at least 89 and 72%, respectively. Diclosulam applied postemergence (POST) provided erratic yellow nutsedge control.


Sign in / Sign up

Export Citation Format

Share Document