Label-Free Electrical Sensing of Small-Molecule Inhibition on Tyrosine Phosphorylation

2007 ◽  
Vol 79 (17) ◽  
pp. 6881-6885 ◽  
Author(s):  
Kagan Kerman ◽  
Mun'de Vestergaard ◽  
Eiichi Tamiya
2017 ◽  
Vol 95 ◽  
pp. 94-99 ◽  
Author(s):  
Yu Yang ◽  
Yuxin Gu ◽  
Bin Wan ◽  
Xiaomin Ren ◽  
Liang-Hong Guo

2019 ◽  
Author(s):  
Benjamin Z. Stanton ◽  
Binbin Lai ◽  
Gang Ren ◽  
Gangqing Hu ◽  
Kelsey N. Lamb ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guangzhong Ma ◽  
Runli Liang ◽  
Zijian Wan ◽  
Shaopeng Wang

AbstractQuantification of molecular interactions on a surface is typically achieved via label-free techniques such as surface plasmon resonance (SPR). The sensitivity of SPR originates from the characteristic that the SPR angle is sensitive to the surface refractive index change. Analogously, in another interfacial optical phenomenon, total internal reflection, the critical angle is also refractive index dependent. Therefore, surface refractive index change can also be quantified by measuring the reflectivity near the critical angle. Based on this concept, we develop a method called critical angle reflection (CAR) imaging to quantify molecular interactions on glass surface. CAR imaging can be performed on SPR imaging setups. Through a side-by-side comparison, we show that CAR is capable of most molecular interaction measurements that SPR performs, including proteins, nucleic acids and cell-based detections. In addition, we show that CAR can detect small molecule bindings and intracellular signals beyond SPR sensing range. CAR exhibits several distinct characteristics, including tunable sensitivity and dynamic range, deeper vertical sensing range, fluorescence compatibility, broader wavelength and polarization of light selection, and glass surface chemistry. We anticipate CAR can expand SPR′s capability in small molecule detection, whole cell-based detection, simultaneous fluorescence imaging, and broader conjugation chemistry.


ACS Omega ◽  
2020 ◽  
Vol 5 (39) ◽  
pp. 25358-25364
Author(s):  
Elisa Chiodi ◽  
Allison M. Marn ◽  
Matthew T. Geib ◽  
Fulya Ekiz Kanik ◽  
John Rejman ◽  
...  

2015 ◽  
Vol 1854 (8) ◽  
pp. 979-986 ◽  
Author(s):  
Roland G. Heym ◽  
Wilfried B. Hornberger ◽  
Viktor Lakics ◽  
Georg C. Terstappen

2008 ◽  
Vol 18 (01) ◽  
pp. 187-194
Author(s):  
PEIJI ZHAO ◽  
DWIGHT WOOLARD ◽  
JORGE M. SEMINARIO ◽  
ROBERT TREW

There is considerable interest in electrical sensing of biomolecular binding since it has the potential to be label free, to work easily in aqueous environments native to the biomolecules, and to be integrated with small, fast, and inexpensive microelectronoics as detection instrumentation. Although electrochemical methods have been used successfully in detections of DNA molecules with Ag labels at very high sensitivity (~ p ml), detection of DNA molecules in terms of label free techniques has a lower sensitivity (~ μ ml). Here, the surface attachment chemistry is critical towards the detection of ultra-low concentration of biomolecules. In this article, based on density functional theory, we have calculated and analyzed the electrical characteristics of the contact between aromatic molecules and silicon (100) − 2×1 surfaces. Design principles for silicon based electrodes of electrochemically biomolecular sensing instruments for label-free sensing of single or a few biomolecular molecules have also been discussed.


Small ◽  
2013 ◽  
Vol 9 (15) ◽  
pp. 2553-2563 ◽  
Author(s):  
Hadi Shafiee ◽  
Muntasir Jahangir ◽  
Fatih Inci ◽  
ShuQi Wang ◽  
Remington B. M. Willenbrecht ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document