scholarly journals A General Protease Digestion Procedure for Optimal Protein Sequence Coverage and Post-Translational Modifications Analysis of Recombinant Glycoproteins: Application to the Characterization of Human Lysyl Oxidase-like 2 Glycosylation

2011 ◽  
Vol 83 (22) ◽  
pp. 8484-8491 ◽  
Author(s):  
Kathryn R. Rebecchi ◽  
Eden P. Go ◽  
Li Xu ◽  
Carrie L. Woodin ◽  
Minae Mure ◽  
...  
2020 ◽  
Vol 92 (18) ◽  
pp. 12193-12200
Author(s):  
Chad R. Weisbrod ◽  
Lissa C. Anderson ◽  
Joseph B. Greer ◽  
Caroline J. DeHart ◽  
Christopher L. Hendrickson

2019 ◽  
Author(s):  
Lindsay Pino ◽  
Andy Lin ◽  
Wout Bittremieux

For the 2018 YPIC Challenge contestants were invited to try to decipher two unknown English questions encoded by a synthetic protein expressed in Escherichia coli. In addition to deciphering the sentence, contestants were asked to determine the 3D structure and detect any post-translation modifications left by the host organism. We present our experimental and computational strategy to characterize this sample by identifying the unknown protein sequence and detecting the presence of post-translational modifications. The sample was acquired with dynamic exclusion disabled to increase the signal-to-noise ratio of the measured molecules, after which spectral clustering was used to generate high-quality consensus spectra. De novo spectrum identification was used to determine the synthetic protein sequence, and any post-translational modifications introduced by E. coli on the synthetic protein were analyzed via spectral networking. This workflow resulted in a de novo sequence coverage of 70%, on par with sequence database searching performance. Additionally, the spectral networking analysis indicated that no systematic modifications were introduced on the synthetic protein by E. coli. The strategy presented here can be directly used to analyze samples for which no protein sequence information is available or when the identity of the sample is unknown. All software and code to perform the bioinformatics analysis is available as open source, and self-contained Jupyter notebooks are provided to fully recreate the analysis.


Amino Acids ◽  
2010 ◽  
Vol 41 (2) ◽  
pp. 291-310 ◽  
Author(s):  
Bjoern Meyer ◽  
Dimitrios G. Papasotiriou ◽  
Michael Karas

2022 ◽  
Author(s):  
Xinhao Shao ◽  
Christopher Grams ◽  
Yu Gao

Protein structure is connected with its function and interaction and plays an extremely important role in protein characterization. As one of the most important analytical methods for protein characterization, Proteomics is widely used to determine protein composition, quantitation, interaction, and even structures. However, due to the gap between identified proteins by proteomics and available 3D structures, it was very challenging, if not impossible, to visualize proteomics results in 3D and further explore the structural aspects of proteomics experiments. Recently, two groups of researchers from DeepMind and Baker lab have independently published protein structure prediction tools that can help us obtain predicted protein structures for the whole human proteome. Although there is still debate on the validity of some of the predicted structures, it is no doubt that these represent the most accurate predictions to date. More importantly, this enabled us to visualize the majority of human proteins for the first time. To help other researchers best utilize these protein structure predictions, we present the Sequence Coverage Visualizer (SCV), http://scv.lab.gy, a web application for protein sequence coverage 3D visualization. Here we showed a few possible usages of the SCV, including the labeling of post-translational modifications and isotope labeling experiments. These results highlight the usefulness of such 3D visualization for proteomics experiments and how SCV can turn a regular result list into structural insights. Furthermore, when used together with limited proteolysis, we demonstrated that SCV can help validate and compare different protein structures, including predicted ones and existing PDB entries. By performing limited proteolysis on native proteins at various time points, SCV can visualize the progress of the digestion. This time-series data further allowed us to compare the predicted structure and existing PDB entries. Although not deterministic, these comparisons could be used to refine current predictions further and represent an important step towards a complete and correct protein structure database. Overall, SCV is a convenient and powerful tool for visualizing proteomics results.


Sign in / Sign up

Export Citation Format

Share Document