Integrating Highly Efficient Recognition and Signal Transition of g-C3N4 Embellished Ti3C2 MXene Hybrid Nanosheets for Electrogenerated Chemiluminescence Analysis of Protein Kinase Activity

2020 ◽  
Vol 92 (15) ◽  
pp. 10668-10676 ◽  
Author(s):  
Yan Sun ◽  
Yimeng Zhang ◽  
HuiXin Zhang ◽  
Meiling Liu ◽  
Yang Liu
1976 ◽  
Vol 35 (03) ◽  
pp. 635-642 ◽  
Author(s):  
M Steiner

SummaryThe effect of thrombin on the phosphorylating activity of platelet membranes was compared to that of trypsin. Preincubation of non-32P phosphorylated platelet membranes with or without either of these two enzymes resulted in a considerable loss of membrane protein kinase activity which was most severe when trypsin was used. Protein kinase activity and endogenous protein acceptors decreased in parallel. 32P-phosphorylated membranes showed a slow but progressive loss of label which was accelerated by trypsin. Thrombin under these conditions prevented the loss of 32P-phosphate. These results are interpreted to indicate a thrombin-induced destruction of a phosphoprotein phosphatase. The protein kinase activity of phosphorylated platelet membranes using endogenous or exogenous protein substrates showed a significant reduction compared to non-phosphorylated membranes suggesting a deactivation of protein kinase by phosphorylation of platelet membranes. Neither thrombin nor trypsin caused a qualitative change in the membrane polypeptides accepting 32P-phosphate but resulted in quantitative alterations of their ability to become phosphorylated.


Sign in / Sign up

Export Citation Format

Share Document