Nanodissection of Selected Viral Particles by Scanning Transmission Electron Microscopy/Focused Ion Beam for Genetic Identification

2021 ◽  
Vol 93 (39) ◽  
pp. 13126-13133
Author(s):  
Dror Horvitz ◽  
Elad Milrot ◽  
Neta Luria ◽  
Efi Makdasi ◽  
Adi Beth-Din ◽  
...  
2018 ◽  
Vol 24 (3) ◽  
pp. 193-206 ◽  
Author(s):  
Andrea Parisini ◽  
Stefano Frabboni ◽  
Gian Carlo Gazzadi ◽  
Rodolfo Rosa ◽  
Aldo Armigliato

AbstractIn this work, we compare the results of different Cliff–Lorimer (Cliff & Lorimer 1975) based methods in the case of a quantitative energy dispersive spectrometry investigation of light elements in ternary C–O–Si thin films. To determine the Cliff–Lorimer (C–L) k-factors, we fabricated, by focused ion beam, a standard consisting of a wedge lamella with a truncated tip, composed of two parallel SiO2 and 4H-SiC stripes. In 4H-SiC, it was not possible to obtain reliable k-factors from standard extrapolation methods owing to the strong CK-photon absorption. To overcome this problem, an extrapolation method exploiting the shape of the truncated tip of the lamella is proposed herein. The k-factors thus determined, were then used in an application of the C–L quantification procedure to a defect found at the SiO2/4H-SiC interface in the channel region of a metal-oxide field-effect-transistor device. As in this procedure, the sample thickness is required, a method to determine this quantity from the averaged and normalized scanning transmission electron microscopy intensity is also detailed. Monte Carlo simulations were used to investigate the discrepancy between experimental and theoretical k-factors and to bridge the gap between the k-factor and the Watanabe and Williams ζ-factor methods (Watanabe & Williams, 2006).


2008 ◽  
Vol 16 (1) ◽  
pp. 24-27 ◽  
Author(s):  
Haifeng Wang ◽  
Jason Fang ◽  
Jason Arjavac ◽  
Rudy Kellner

Automated scanning transmission electron microscopy (STEM) metrology provides critical dimension (CD) measurements an order of magnitude more precise than comparable scanning electron microscopy (SEM) measurements. New developments in automation now also provide throughput and response time sufficient to support high volume microelectronic manufacturing processes. The newly developed methodology includes automated, focused ion beam (FIB) based sample preparation; innovative, ex-situ sample extraction; and automated metrology. Although originally developed to control the production of thin film magnetic heads for data storage, the technique is fully applicable to any wafer-based manufacturing process.


2007 ◽  
Vol 1020 ◽  
Author(s):  
Debbie J Stokes ◽  
Laurent Roussel ◽  
Oliver Wilhelmi ◽  
Lucille A Giannuzzi ◽  
Dominique HW Hubert

AbstractCombined focused ion beam (FIB) and scanning electron microscopy (SEM) methods are becoming increasingly important for nano-materials applications as we continue to develop ways to exploit the complex interplay between primary ion and electron beams and the substrate, in addition to the various subtle relationships with gaseous intermediaries.We demonstrate some of the recent progress that has been made concerning FIB SEM processing of both conductive and insulating materials for state-of-the-art nanofabrication and prototyping and superior-quality specimen preparation for ultra-high resolution scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) imaging and related in situ nanoanalysis techniques.


Author(s):  
F. Khoury ◽  
L. H. Bolz

The lateral growth habits and non-planar conformations of polyethylene crystals grown from dilute solutions (<0.1% wt./vol.) are known to vary depending on the crystallization temperature.1-3 With the notable exception of a study by Keith2, most previous studies have been limited to crystals grown at <95°C. The trend in the change of the lateral growth habit of the crystals with increasing crystallization temperature (other factors remaining equal, i.e. polymer mol. wt. and concentration, solvent) is illustrated in Fig.l. The lateral growth faces in the lozenge shaped type of crystal (Fig.la) which is formed at lower temperatures are {110}. Crystals formed at higher temperatures exhibit 'truncated' profiles (Figs. lb,c) and are bound laterally by (110) and (200} growth faces. In addition, the shape of the latter crystals is all the more truncated (Fig.lc), and hence all the more elongated parallel to the b-axis, the higher the crystallization temperature.


Sign in / Sign up

Export Citation Format

Share Document