Ratiometric Imaging of Tissue by Two-Photon Microscopy: Observation of a High Level of Formaldehyde around Mouse Intestinal Crypts

2017 ◽  
Vol 89 (6) ◽  
pp. 3724-3731 ◽  
Author(s):  
Subhankar Singha ◽  
Yong Woong Jun ◽  
Juryang Bae ◽  
Kyo Han Ahn
2008 ◽  
Vol 25 (5-6) ◽  
pp. 693-700 ◽  
Author(s):  
SUE-YEON CHOI ◽  
SKYLER JACKMAN ◽  
WALLACE B. THORESON ◽  
RICHARD H. KRAMER

AbstractRetinal cones are depolarized in darkness, keeping voltage-gated Ca2+ channels open and sustaining exocytosis of synaptic vesicles. Light hyperpolarizes the membrane potential, closing Ca2+ channels and suppressing exocytosis. Here, we quantify the Ca2+ concentration in cone terminals, with Ca2+ indicator dyes. Two-photon ratiometric imaging of fura-2 shows that global Ca2+ averages ~360 nM in darkness and falls to ~190 nM in bright light. Depolarizing cones from their light to their dark membrane potential reveals hot spots of Ca2+ that co-label with a fluorescent probe for the synaptic ribbon protein ribeye, consistent with tight localization of Ca2+ channels near ribbons. Measurements with a low-affinity Ca2+ indicator show that the local Ca2+ concentration near the ribbon exceeds 4 μM in darkness. The high level of Ca2+ near the ribbon combined with previous estimates of the Ca2+ sensitivity of release leads to a predicted dark release rate that is much faster than observed, suggesting that the cone synapse operates in a maintained state of synaptic depression in darkness.


2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

ACS Omega ◽  
2020 ◽  
Author(s):  
Kazushi Yamaguchi ◽  
Kohei Otomo ◽  
Yuichi Kozawa ◽  
Motosuke Tsutsumi ◽  
Tomoko Inose ◽  
...  

2021 ◽  
Vol 18 (2) ◽  
pp. 220-220
Author(s):  
Weijian Zong ◽  
Runlong Wu ◽  
Shiyuan Chen ◽  
Junjie Wu ◽  
Hanbin Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vincent D. Ching-Roa ◽  
Eben M. Olson ◽  
Sherrif F. Ibrahim ◽  
Richard Torres ◽  
Michael G. Giacomelli

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2009 ◽  
Vol 34 (11) ◽  
pp. 1684 ◽  
Author(s):  
Nicolas Olivier ◽  
Alexandre Mermillod-Blondin ◽  
Craig B. Arnold ◽  
Emmanuel Beaurepaire

Biomedicines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Feby Wijaya Pratiwi ◽  
Chien-Chung Peng ◽  
Si-Han Wu ◽  
Chiung Wen Kuo ◽  
Chung-Yuan Mou ◽  
...  

Mesoporous silica nanoparticles (MSNs) have emerged as a prominent nanomedicine platform, especially for tumor-related nanocarrier systems. However, there is increasing concern about the ability of nanoparticles (NPs) to penetrate solid tumors, resulting in compromised antitumor efficacy. Because the physicochemical properties of NPs play a significant role in their penetration and accumulation in solid tumors, it is essential to systematically study their relationship in a model system. Here, we report a multihierarchical assessment of the accumulation and penetration of fluorescence-labeled MSNs with nine different physicochemical properties in tumor spheroids using two-photon microscopy. Our results indicated that individual physicochemical parameters separately could not define the MSNs’ ability to accumulate in a deeper tumor region; their features are entangled. We observed that the MSNs’ stability determined their success in reaching the hypoxia region. Moreover, the change in the MSNs’ penetration behavior postprotein crowning was associated with both the original properties of NPs and proteins on their surfaces.


2010 ◽  
Author(s):  
G. Metgé ◽  
C. Fiorini-Debuisschert ◽  
F. Charra ◽  
G. Bordeau ◽  
E. Faurel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document