A Self-Contained Chemiluminescent Lateral Flow Assay for Point-of-Care Testing

2018 ◽  
Vol 90 (15) ◽  
pp. 9132-9137 ◽  
Author(s):  
Jinqi Deng ◽  
Mingzhu Yang ◽  
Jing Wu ◽  
Wei Zhang ◽  
Xingyu Jiang
Author(s):  
Yuhang Zhang ◽  
Qingmei Li ◽  
Junqing Guo ◽  
Dongliang Li ◽  
Li Wang ◽  
...  

African swine fever (ASF) is a highly contagious and usually deadly porcine infectious disease listed as a notifiable disease by the World Organization for Animal Health (OIE). It has brought huge economic losses worldwide, especially since 2018, the first outbreak in China. As there are still no effective vaccines available to date, diagnosis of ASF is essential for its surveillance and control, especially in areas far from city with limited resources and poor settings. In this study, a sensitive, specific, rapid, and simple molecular point of care testing for African swine fever virus (ASFV) B646L gene in blood samples was established, including treatment of blood samples with simple dilution and boiling for 5 min, isothermal amplification with recombinase-aided amplification (RAA) at 37°C in a water bath for 10 min, and visual readout with lateral flow assay (LFA) at room temperature for 10–15 min. Without the need to extract viral DNA in blood samples, the intact workflow from sampling to final diagnostic decision can be completed with minimal equipment requirement in 30 min. The detection limit of RAA-LFA for synthesized B646L gene-containing plasmid was 10 copies/μl, which was 10-fold more sensitive than OIE-recommended PCR and quantitative PCR. In addition, no positive readout of RAA-LFA was observed in testing classical swine fever virus, porcine reproductive and respiratory syndrome virus, porcine epidemic diarrhea virus, pseudorabies virus and porcine circovirus 2, exhibiting good specificity. Evaluation of clinical blood samples of RAA-LFA showed 100% coincident rate with OIE-recommended PCR, in testing both extracted DNAs and treated bloods. We also found that some components in blood samples greatly inhibited PCR performance, but had little effect on RAA. Inhibitory effect can be eliminated when blood was diluted at least 32–64-fold for direct PCR, while only a 2–4 fold dilution of blood was suitable for direct RAA, indicating RAA is a better choice than PCR when blood is used as detecting sample. Taken together, we established an sensitive, specific, rapid, and simple RAA-LFA for ASFV molecular detection without the need to extract viral DNA, providing a good choice for point of care testing of ASF diagnosis in the future.


The Analyst ◽  
2019 ◽  
Vol 144 (10) ◽  
pp. 3314-3322 ◽  
Author(s):  
Zhao Li ◽  
Hui Chen ◽  
Ping Wang

A microfluidic chip for quantitative and rapid readout of LFA results.


Talanta ◽  
2019 ◽  
Vol 201 ◽  
pp. 126-133 ◽  
Author(s):  
Yan Gong ◽  
Yamin Zheng ◽  
Birui Jin ◽  
Minli You ◽  
Jiayu Wang ◽  
...  

Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM).The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated at a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM). The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


2016 ◽  
Vol 6 (1) ◽  
pp. 1600920 ◽  
Author(s):  
Jane Ru Choi ◽  
Kar Wey Yong ◽  
Ruihua Tang ◽  
Yan Gong ◽  
Ting Wen ◽  
...  

Author(s):  
Paul Deutschmann ◽  
Jutta Pikalo ◽  
Martin Beer ◽  
Sandra Blome

African swine fever (ASF) is one of the most important viral diseases of domestic pigs and wild boar. Apart from endemic cycles in Africa, ASF is now continuously spreading in Europe and Asia. As ASF leads to severe but unspecific clinical signs and high lethality, early pathogen detection is of utmost importance. Recently, “point-of-care” (POC) tests have been intensively discussed for the use in remote areas but also in the context of on-farm epidemiological investigations and wild boar carcass screening. Along these lines, the INGEZIM ASFV CROM Ag lateral flow assay (Eurofins Technologies Ingenasa) promises virus antigen detection under field conditions within minutes. In the present study, we evaluated the performance of the assay with selected high-quality reference blood samples, and also with real field samples from wild boar carcasses in different stages of decay from the ongoing ASF outbreak in Germany. While we observed a sensitivity of roughly 77% in freeze-thawed matrices of close to ideal quality, our approach to simulate field conditions in direct carcass testing without any modification resulted in a drastically reduced sensitivity of only 12.5%. Freeze thawing increased the sensitivity to roughly 44% which mirrored the overall sensitivity of 49% in the total data set of carcass samples. A diagnostic specificity of 100% was observed. However, most of the German ASF cases in wild boar would have been missed using the lateral flow assay (LFA) alone. Therefore, the antigen-specific LFA should not be regarded as a substitute for any OIE listed diagnostic method and has very limited use for carcass testing at the point of care. For optimized LFA antigen tests, the sensitivity with field samples must be significantly increased. An improved sensitivity is seen with freeze-thawed samples, which may indicate problems in the accessibility of ASFV antigen.


Sign in / Sign up

Export Citation Format

Share Document