Structural Diversity of Amyloid Fibrils and Advances in Their Structure Determination

Biochemistry ◽  
2020 ◽  
Vol 59 (5) ◽  
pp. 639-646 ◽  
Author(s):  
Dan Li ◽  
Cong Liu
Methods ◽  
2018 ◽  
Vol 138-139 ◽  
pp. 26-38 ◽  
Author(s):  
Antoine Loquet ◽  
Nadia El Mammeri ◽  
Jan Stanek ◽  
Mélanie Berbon ◽  
Benjamin Bardiaux ◽  
...  

Author(s):  
Takato Hiramatsu ◽  
Naoki Yamamoto ◽  
Seongmin Ha ◽  
Yuki Masuda ◽  
Mitsuru Yasuda ◽  
...  

ABSTRACTIt is recently suggested that amyloid polymorphism, i.e., structural diversity of amyloid fibrils, has a deep relationship with pathology. However, its prompt recognition is almost halted due to insufficiency of analytical methods for detecting polymorphism of amyloid fibrils sensitively and quickly. Here, we propose that iodine staining, a historically known reaction that was firstly found by Virchow, can be used as a method for distinguishing amyloid polymorphs. When insulin fibrils were prepared and iodine-stained, they exhibited different colors depending on polymorphs. Each of the colors was inherited to daughter fibrils by seeding reactions. The colors were fundamentally represented as a sum of three absorption bands in visible region between 400-750 nm, and the bands showed different titration curves against iodine, suggesting that there are three specific iodine binding sites. The analysis of resonance Raman spectra and polarization microscope suggested that several polyiodide ions composed of I3− and/or I5− were formed on the grooves or the edges of β-sheets. It was concluded that the polyiodide species and conformations formed are sensitive to surface structure of amyloid fibrils, and the resultant differences in color will be useful for detecting polymorphism in a wide range of diagnostic samples.


2019 ◽  
Vol 116 (46) ◽  
pp. 23040-23049 ◽  
Author(s):  
Ben A. Meinen ◽  
Varun V. Gadkari ◽  
Frederick Stull ◽  
Brandon T. Ruotolo ◽  
James C. A. Bardwell

The assembly of small disordered proteins into highly ordered amyloid fibrils in Alzheimer’s and Parkinson’s patients is closely associated with dementia and neurodegeneration. Understanding the process of amyloid formation is thus crucial in the development of effective treatments for these devastating neurodegenerative diseases. Recently, a tiny, highly conserved and disordered protein called SERF was discovered to modify amyloid formation in Caenorhabditis elegans and humans. Here, we use kinetics measurements and native ion mobility-mass spectrometry to show that SERF mainly affects the rate of primary nucleation in amyloid formation for the disease-related proteins Aβ40 and α-synuclein. SERF’s high degree of plasticity enables it to bind various conformations of monomeric Aβ40 and α-synuclein to form structurally diverse, fuzzy complexes. This structural diversity persists into early stages of amyloid formation. Our results suggest that amyloid nucleation is considerably more complex than age-related conversion of Aβ40 and α-synuclein into single amyloid-prone conformations.


2020 ◽  
Author(s):  
Keisuke Yuzu ◽  
Naoki Yamamoto ◽  
Masahiro Noji ◽  
Masatomo So ◽  
Yuji Goto ◽  
...  

ABSTRACTAmyloid fibrils are aberrant protein aggregates associated with various amyloidoses and neurodegenerative diseases. It is recently indicated that structural diversity of amyloid fibrils often results in different pathological phenotypes including cytotoxicity and infectivity. The diverse structures are predicted to propagate by seed-dependent growth, which is one of the characteristic properties of amyloid fibrils. However, much remains unknown regarding how exactly the amyloid structures are inherited to subsequent generations by seeding reaction. Here, we investigated the behaviors of self- and cross-seeding of amyloid fibrils of human and bovine insulin in terms of thioflavin T fluorescence, morphology, secondary structure, and iodine staining. Insulin amyloid fibrils exhibited different structures depending on species, and each of which replicated in self-seeding. In contrast, gradual structural changes were observed in cross-seeding, and a new-type amyloid structure with distinct morphology and cytotoxicity was formed when human insulin was seeded with bovine insulin fibrils. Remarkably, iodine staining tracked changes in amyloid structure sensitively, and singular value decomposition (SVD) analysis of the UV-Vis absorption spectra of the fibril-bound iodine has revealed the presence of one or more intermediate metastable states during the structural changes. From these findings, we propose a propagation scheme with multistep structural changes in cross-seeding between two heterologous proteins, which is accounted for as a consequence of the rugged energy landscape of amyloid formation.


2011 ◽  
Vol 133 (35) ◽  
pp. 13967-13974 ◽  
Author(s):  
Marvin J. Bayro ◽  
Galia T. Debelouchina ◽  
Matthew T. Eddy ◽  
Neil R. Birkett ◽  
Catherine E. MacPhee ◽  
...  

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 280
Author(s):  
Navindra Keerthisinghe ◽  
Matthew S. Christian ◽  
Anna A. Berseneva ◽  
Gregory Morrison ◽  
Vladislav V. Klepov ◽  
...  

The solvothermal synthesis, structure determination and optical characterization of five new metastable halometallate compounds, [1,10-phenH][Pb3.5I8] (1), [1,10-phenH2][Pb5I12]·(H2O) (2), [1,10-phen][Pb2I4] (3), [1,10-phen]2[Pb5Br10] (4) and [1,10-phenH][SbI4]·(H2O) (5), are reported. The materials exhibit rich structural diversity and exhibit structural dimensionalities that include 1D chains, 2D sheets and 3D frameworks. The optical spectra of these materials are consistent with bandgaps ranging from 2.70 to 3.44 eV. We show that the optical behavior depends on the structural dimensionality of the reported materials, which are potential candidates for semiconductor applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takato Hiramatsu ◽  
Naoki Yamamoto ◽  
Seongmin Ha ◽  
Yuki Masuda ◽  
Mitsuru Yasuda ◽  
...  

Abstract It is recently suggested that amyloid polymorphism, i.e., structural diversity of amyloid fibrils, has a deep relationship with pathology. However, its prompt recognition is almost halted due to insufficiency of analytical methods for detecting polymorphism of amyloid fibrils sensitively and quickly. Here, we propose that iodine staining, a historically known reaction that was firstly found by Virchow, can be used as a method for distinguishing amyloid polymorphs. When insulin fibrils were prepared and iodine-stained, they exhibited different colors depending on polymorphs. Each of the colors was inherited to daughter fibrils by seeding reactions. The colors were fundamentally represented as a sum of three absorption bands in visible region between 400 and 750 nm, and the bands showed different titration curves against iodine, suggesting that there are three specific iodine binding sites. The analysis of resonance Raman spectra and polarization microscope suggested that several polyiodide ions composed of I3− and/or I5− were formed on the grooves or the edges of β-sheets. It was concluded that the polyiodide species and conformations formed are sensitive to surface structure of amyloid fibrils, and the resultant differences in color will be useful for detecting polymorphism in a wide range of diagnostic samples.


Sign in / Sign up

Export Citation Format

Share Document