scholarly journals Solid-State Characterization and Role of Solvent Molecules on the Crystal Structure, Packing, and Physiochemical Properties of Different Quercetin Solvates

2020 ◽  
Vol 20 (10) ◽  
pp. 6573-6584
Author(s):  
Panayiotis Klitou ◽  
Christopher M. Pask ◽  
Larisa Onoufriadi ◽  
Ian Rosbottom ◽  
Elena Simone
CrystEngComm ◽  
2015 ◽  
Vol 17 (12) ◽  
pp. 2504-2516 ◽  
Author(s):  
Doris E. Braun ◽  
Thomas Gelbrich ◽  
Volker Kahlenberg ◽  
Ulrich J. Griesser

Crystal structure prediction combined with experimental studies unveil the structural and thermodynamic features of three non-solvated forms and a carbon tetrachloride solvate of 4-aminoquinaldine and provide intriguing insights into void structures and the role of solvent inclusion.


2017 ◽  
Vol 73 (7) ◽  
pp. 563-568
Author(s):  
Eleonora Freire ◽  
Gustavo A. Echeverría ◽  
Ricardo Baggio

Two lamotriginium salts, namely lamotriginium crotonate [systematic name: 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium but-2-enoate, C9H8Cl2N5 +·C4H5O2 −, (III)] and lamotriginium salicylate [systematic name: 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 2-hydroxybenzoate ethanol monosolvate, C9H8Cl2N5 +·C7H5O3 −·C2H5OH, (IV)] present extremely similar centrosymmetric hydrogen-bonded A...L...L...A packing building blocks (L is lamotriginium and A is the anion). The fact that salicylate salt (IV) is (ethanol) solvated, while crotonate salt (III) is not, has a profound effect on the way these elemental units aggregate to generate the final crystal structure. Possible reasons for this behaviour are analyzed and the hypothesis raised checked against similar structures in the literature.


IUCrData ◽  
2019 ◽  
Vol 4 (9) ◽  
Author(s):  
Jayaraman Selvakumar ◽  
Kuppuswamy Arumugam

The solid-state structural analysis of the title compound [systematic name: 5,11-disulfanylidene-4,6,10,12-tetrakis(2,4,6-trimethylphenyl)-4,6,10,12-tetraazatricyclo[7.3.0.03,7]dodeca-1(9),3(7)-diene-2,8-dione], C44H44N4O2S2 [+solvent], reveals that the molecule crystallizes in a highly symmetric cubic space group so that one quarter of the molecule is crystallographically unique, the molecule lying on special positions (two mirror planes, two twofold axes and a center of inversion). The crystal structure exhibits large cavities of 193 Å3 accounting for 7.3% of the total unit-cell volume. These cavities contain residual density peaks but it was not possible to unambiguously identify the solvent therein. The contribution of the disordered solvent molecules to the scattering was removed using a solvent mask and is not included in the reported molecular weight. No classical hydrogen bonds are observed between the main molecules.


2005 ◽  
pp. 3808 ◽  
Author(s):  
Seiken Nakamatsu ◽  
Shinji Toyota ◽  
William Jones ◽  
Fumio Toda

1992 ◽  
Vol 70 (3) ◽  
pp. 919-925 ◽  
Author(s):  
A. Wallace Cordes ◽  
Charles M. Chamchoumis ◽  
Robin G. Hicks ◽  
Richard T. Oakley ◽  
Kelly M. Young ◽  
...  

The preparation and solid state characterization of the bifunctional radical furan-2,5-bis(1,2,3,5-dithiadiazolyl) 2,5-[(S2N2C)OC4H2(CN2S2)] and the related monofunctional radical 2-cyanofuran-5-(1,2,3,5-dithiadiazolyl) 2,5-[(S2N2C)OC4H2(CN)] are described. The crystal structure of 2,5-[(S2N2C)OC4H2(CN2S2)] is orthorhombic, space group Pna21, and consists of interleaved arrays of dimers, for which the mean interannular [Formula: see text] contact is 3.137 Å. The crystal structure of the monofunctional radical 2,5-[(S2N2C)OC4H2(CN)] is monoclinic, space group P21/n, and consists of a ribbon-like network of dimers (mean interannular [Formula: see text] interconnected by close head-to-tail [Formula: see text] contacts. The dimer units form stacks parallel to z, with a mean interdimer [Formula: see text] separation of 3.956 Å. The similarities and differences between these two crystal structures and those of related benzene-substituted systems are discussed. Keywords: dithiadiazolyl radicals, furan-based diradicals, cyanofuran-based radicals, radical dimers, crystal structures.


Sign in / Sign up

Export Citation Format

Share Document