Reconsidering the Roles of Noncovalent Intramolecular “Locks” in π-Conjugated Molecules

Author(s):  
Chamikara Karunasena ◽  
Shi Li ◽  
Michael C. Heifner ◽  
Sean M. Ryno ◽  
Chad Risko
Keyword(s):  
2019 ◽  
Author(s):  
Haoke Zhang ◽  
Lili Du ◽  
Lin Wang ◽  
Junkai Liu ◽  
Qing Wan ◽  
...  

<p>Building molecular machine has long been a dream of scientists as it is expected to revolutionize many aspects of technology and medicine. Implementing the solid-state molecular motion is the prerequisite for a practical molecular machine. However, few works on solid-state molecular motion have been reported and it is almost impossible to “see” the motion even if it happens. Here the light-driven molecular motion in solid state is discovered in two non-conjugated molecules <i>s</i>-DPE and <i>s</i>-DPE-TM, resulting in the formation of excited-state though-space complex (ESTSC). Meanwhile, the newly formed ESTSC generates an abnormal visible emission which is termed as clusteroluminescence. Notably, the original packing structure can recover from ESTSC when the light source is removed. These processes have been confirmed by time-resolved spectroscopy and quantum mechanics calculation. This work provides a new strategy to manipulate and “see” solid-state molecular motion and gains new insights into the mechanistic picture of clusteroluminescence.<br></p>


1998 ◽  
Vol 63 (9) ◽  
pp. 1295-1308 ◽  
Author(s):  
Benoît Champagne ◽  
Thierry Legrand ◽  
Eric A. Perpete ◽  
Olivier Quinet ◽  
Jean-Marie André

CHF/6-311G* calculations of the first electronic and vibrational hyperpolarizabilities reveal that merocyanines present a substantial βv/βe ratio under their quinonoid nonpolar form. It originates from a large vibrational first hyperpolarizability whereas its electronic counterpart is small for this class of push-pull π-conjugated molecules. The transition from the quinonoid to the aromatic configuration is accompanied by an increase of βe and a decrease of the βv/βe ratio as well as by a ≈ 180° rotation in the plane of the molecule of βe and βv with respect to the molecular frame. Our results support the recent experimental discovery that antiparallel aggregation of aromatic and quinonoid forms of merocyanine is energetically favoured and that their first hyperpolarizabilities, which combine constructively, present both electronic and non purely electronic origins.


Author(s):  
Makoto Ogata

Abstract Carbohydrates play important and diverse roles in the fundamental processes of life. We have established a method for accurately and a large scale synthesis of functional carbohydrates with diverse properties using a unique enzymatic method. Furthermore, various artificial glycan-conjugated molecules have been developed by adding these synthetic carbohydrates to macromolecules and to middle and low molecular weight molecules with different properties. These glycan-conjugated molecules have biological activities comparable to or higher than those of natural compounds, and present unique functions. In this review, several synthetic glycan-conjugated molecules are taken as examples to show design, synthesis and function.


Author(s):  
J. Stanley Griffith

ABSTRACTThe values of a free-electron eigenfunotion at the carbon nuclei of a conjugated hydrocarbon are found to satisfy a system of algebraic equations. These equations are similar in form to those obtained in the method known as the linear combination of atomic orbitale but only coincide with them for linear polyenes and benzene. The symmetry, degeneracy and energy of the eigenvectors of these free-electron equations correspond exactly to those of the free-electron wave functions found by the usual methods. From this correspondence, a theorem is deduced about the free-electron charge density in alternant hydrocarbons.


2014 ◽  
Vol 16 (1) ◽  
pp. 288-296 ◽  
Author(s):  
Yoshikazu Ito ◽  
Kazuyuki Takai ◽  
Akira Miyazaki ◽  
Vajiravelu Sivamurugan ◽  
Manabu Kiguchi ◽  
...  

2021 ◽  
Author(s):  
Hansjörg Grützmacher ◽  
Grégoire Le Corre ◽  
Juan José Gamboa-Carballo ◽  
Zhongshu Li

Sign in / Sign up

Export Citation Format

Share Document