Design and Synthesis of Novel Oxime Ester Photoinitiators Augmented by Automated Machine Learning

Author(s):  
Won Jung Lee ◽  
H. Shaun Kwak ◽  
Deuk-rak Lee ◽  
Chunrim Oh ◽  
Eul Kgun Yum ◽  
...  
Author(s):  
Silvia Cristina Nunes das Dores ◽  
Carlos Soares ◽  
Duncan Ruiz

2021 ◽  
Vol 52 (2) ◽  
pp. S3
Author(s):  
Grace Tsui ◽  
Derek S. Tsang ◽  
Chris McIntosh ◽  
Thomas G. Purdie ◽  
Glenn Bauman ◽  
...  

AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 34-47
Author(s):  
Borja Espejo-Garcia ◽  
Ioannis Malounas ◽  
Eleanna Vali ◽  
Spyros Fountas

In the past years, several machine-learning-based techniques have arisen for providing effective crop protection. For instance, deep neural networks have been used to identify different types of weeds under different real-world conditions. However, these techniques usually require extensive involvement of experts working iteratively in the development of the most suitable machine learning system. To support this task and save resources, a new technique called Automated Machine Learning has started being studied. In this work, a complete open-source Automated Machine Learning system was evaluated with two different datasets, (i) The Early Crop Weeds dataset and (ii) the Plant Seedlings dataset, covering the weeds identification problem. Different configurations, such as the use of plant segmentation, the use of classifier ensembles instead of Softmax and training with noisy data, have been compared. The results showed promising performances of 93.8% and 90.74% F1 score depending on the dataset used. These performances were aligned with other related works in AutoML, but they are far from machine-learning-based systems manually fine-tuned by human experts. From these results, it can be concluded that finding a balance between manual expert work and Automated Machine Learning will be an interesting path to work in order to increase the efficiency in plant protection.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Milos Kotlar ◽  
Marija Punt ◽  
Zaharije Radivojevic ◽  
Milos Cvetanovic ◽  
Veljko Milutinovic

Author(s):  
Ke Wang ◽  
Qingwen Xue ◽  
Jian John Lu

Identifying high-risk drivers before an accident happens is necessary for traffic accident control and prevention. Due to the class-imbalance nature of driving data, high-risk samples as the minority class are usually ill-treated by standard classification algorithms. Instead of applying preset sampling or cost-sensitive learning, this paper proposes a novel automated machine learning framework that simultaneously and automatically searches for the optimal sampling, cost-sensitive loss function, and probability calibration to handle class-imbalance problem in recognition of risky drivers. The hyperparameters that control sampling ratio and class weight, along with other hyperparameters, are optimized by Bayesian optimization. To demonstrate the performance of the proposed automated learning framework, we establish a risky driver recognition model as a case study, using video-extracted vehicle trajectory data of 2427 private cars on a German highway. Based on rear-end collision risk evaluation, only 4.29% of all drivers are labeled as risky drivers. The inputs of the recognition model are the discrete Fourier transform coefficients of target vehicle’s longitudinal speed, lateral speed, and the gap between the target vehicle and its preceding vehicle. Among 12 sampling methods, 2 cost-sensitive loss functions, and 2 probability calibration methods, the result of automated machine learning is consistent with manual searching but much more computation-efficient. We find that the combination of Support Vector Machine-based Synthetic Minority Oversampling TEchnique (SVMSMOTE) sampling, cost-sensitive cross-entropy loss function, and isotonic regression can significantly improve the recognition ability and reduce the error of predicted probability.


Author(s):  
Joseph D. Romano ◽  
Trang T. Le ◽  
Weixuan Fu ◽  
Jason H. Moore

AbstractAutomated machine learning (AutoML) and artificial neural networks (ANNs) have revolutionized the field of artificial intelligence by yielding incredibly high-performing models to solve a myriad of inductive learning tasks. In spite of their successes, little guidance exists on when to use one versus the other. Furthermore, relatively few tools exist that allow the integration of both AutoML and ANNs in the same analysis to yield results combining both of their strengths. Here, we present TPOT-NN—a new extension to the tree-based AutoML software TPOT—and use it to explore the behavior of automated machine learning augmented with neural network estimators (AutoML+NN), particularly when compared to non-NN AutoML in the context of simple binary classification on a number of public benchmark datasets. Our observations suggest that TPOT-NN is an effective tool that achieves greater classification accuracy than standard tree-based AutoML on some datasets, with no loss in accuracy on others. We also provide preliminary guidelines for performing AutoML+NN analyses, and recommend possible future directions for AutoML+NN methods research, especially in the context of TPOT.


Sign in / Sign up

Export Citation Format

Share Document