Elucidating Thermally Induced Structural and Chemical Transformations in Kaolinite Using Reactive Molecular Dynamics Simulations and X-ray Scattering Measurements

2019 ◽  
Vol 32 (2) ◽  
pp. 651-662 ◽  
Author(s):  
Murali Gopal Muraleedharan ◽  
Hassnain Asgar ◽  
Sohaib Mohammed ◽  
Greeshma Gadikota ◽  
Adri C. T. van Duin
2020 ◽  
Author(s):  
Murali Gopal Muraleedharan ◽  
Hassnain Asgar ◽  
Seung Ho Hahn ◽  
Nabankur Dasgupta ◽  
Greeshma Gadikota ◽  
...  

Reactive organic fluid - mineral interactions at elevated temperatures contribute to the evolution of planetary matter. One of the less studied but important transformations in this regard involves the reactions of formic acid with naturally occurring clays such as sodium montmorillonite. To advance a mechanistic understanding of these interactions, we use ReaxFF reactive molecular dynamics simulations in conjunction with infrared (IR) spectroscopy and X-ray scattering experiments to investigate the speciation behavior of water-formic acid mixtures on sodium montmorillonite interfaces at 473 K and 1 atm. Using a newly developed reactive forcefield, we show that the experimental IR spectra of unreacted and reacted mixture can be accurately reproduced by ReaxFF/MD. We further benchmark the simulation predictions of sodium carbonate and bicarbonate formation in the clay interlayers using Small and Wide-Angle X-ray Scattering measurements. Subsequently, leveraging the benchmarked forcefield, we interrogate the pathway of speciation reactions with emphasis on carbonate, formate, and hydroxide groups elucidating the energetics, transition states, intermediates, and preferred products. We also delineate the differences in reactivities and catalytic effects of clay edges, facets, and interlayers owing to their local chemical environments, which have far reaching consequences in their speciation behavior. The experimental and simulation approaches described in this study and the transferable forcefields can be applied translationally to advance the science of clay-fluid interactions for several applications including subsurface fluid storage and recovery and clay-pollutant dynamics


2020 ◽  
Author(s):  
Murali Gopal Muraleedharan ◽  
Hassnain Asgar ◽  
Seung Ho Hahn ◽  
Nabankur Dasgupta ◽  
Greeshma Gadikota ◽  
...  

Reactive organic fluid - mineral interactions at elevated temperatures contribute to the evolution of planetary matter. One of the less studied but important transformations in this regard involves the reactions of formic acid with naturally occurring clays such as sodium montmorillonite. To advance a mechanistic understanding of these interactions, we use ReaxFF reactive molecular dynamics simulations in conjunction with infrared (IR) spectroscopy and X-ray scattering experiments to investigate the speciation behavior of water-formic acid mixtures on sodium montmorillonite interfaces at 473 K and 1 atm. Using a newly developed reactive forcefield, we show that the experimental IR spectra of unreacted and reacted mixture can be accurately reproduced by ReaxFF/MD. We further benchmark the simulation predictions of sodium carbonate and bicarbonate formation in the clay interlayers using Small and Wide-Angle X-ray Scattering measurements. Subsequently, leveraging the benchmarked forcefield, we interrogate the pathway of speciation reactions with emphasis on carbonate, formate, and hydroxide groups elucidating the energetics, transition states, intermediates, and preferred products. We also delineate the differences in reactivities and catalytic effects of clay edges, facets, and interlayers owing to their local chemical environments, which have far reaching consequences in their speciation behavior. The experimental and simulation approaches described in this study and the transferable forcefields can be applied translationally to advance the science of clay-fluid interactions for several applications including subsurface fluid storage and recovery and clay-pollutant dynamics


2004 ◽  
Vol 33 (6/7) ◽  
pp. 797-809 ◽  
Author(s):  
Isao Akiyama ◽  
Masaya Ogawa ◽  
Keiichi Takase ◽  
Toshiyuki Takamuku ◽  
Toshio Yamaguchi ◽  
...  

2014 ◽  
Vol 111 (50) ◽  
pp. 17887-17892 ◽  
Author(s):  
Michael E. Wall ◽  
Andrew H. Van Benschoten ◽  
Nicholas K. Sauter ◽  
Paul D. Adams ◽  
James S. Fraser ◽  
...  

2006 ◽  
Vol 110 (46) ◽  
pp. 23515-23523 ◽  
Author(s):  
Salah Bouazizi ◽  
Salah Nasr ◽  
Nejmeddine Jaîdane ◽  
Marie-Claire Bellissent-Funel

2016 ◽  
Vol 144 (20) ◽  
pp. 205102 ◽  
Author(s):  
Suzette A. Pabit ◽  
Andrea M. Katz ◽  
Igor S. Tolokh ◽  
Aleksander Drozdetski ◽  
Nathan Baker ◽  
...  

Soft Matter ◽  
2014 ◽  
Vol 10 (46) ◽  
pp. 9260-9269 ◽  
Author(s):  
Héctor Santana ◽  
Cesar L. Avila ◽  
Ingrid Cabrera ◽  
Rolando Páez ◽  
Viviana Falcón ◽  
...  

Growth hormone releasing peptide-6 self-assembles into long hollow-cylinders, as evidenced by electron microscopy, small-angle X-ray scattering and molecular dynamics simulations.


Sign in / Sign up

Export Citation Format

Share Document