Synthesis, Characterization, and Identification of New in Vitro Covalent DNA Adducts of Divinyl Sulfone, an Oxidative Metabolite of Sulfur Mustard

2017 ◽  
Vol 30 (10) ◽  
pp. 1874-1882 ◽  
Author(s):  
Shanshan Lv ◽  
Yajiao Zhang ◽  
Bin Xu ◽  
Hua Xu ◽  
Yumei Zhao ◽  
...  
Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 366
Author(s):  
Valeria Guidolin ◽  
Erik S. Carlson ◽  
Andrea Carrà ◽  
Peter W. Villalta ◽  
Laura A. Maertens ◽  
...  

Alcohol consumption is a risk factor for the development of several cancers, including those of the head and neck and the esophagus. The underlying mechanisms of alcohol-induced carcinogenesis remain unclear; however, at these sites, alcohol-derived acetaldehyde seems to play a major role. By reacting with DNA, acetaldehyde generates covalent modifications (adducts) that can lead to mutations. Previous studies have shown a dose dependence between levels of a major acetaldehyde-derived DNA adduct and alcohol exposure in oral-cell DNA. The goal of this study was to optimize a mass spectrometry (MS)-based DNA adductomic approach to screen for all acetaldehyde-derived DNA adducts to more comprehensively characterize the genotoxic effects of acetaldehyde in humans. A high-resolution/-accurate-mass data-dependent constant-neutral-loss-MS3 methodology was developed to profile acetaldehyde-DNA adducts in purified DNA. This resulted in the identification of 22 DNA adducts. In addition to the expected N2-ethyldeoxyguanosine (after NaBH3CN reduction), two previously unreported adducts showed prominent signals in the mass spectra. MSn fragmentation spectra and accurate mass were used to hypothesize the structure of the two new adducts, which were then identified as N6-ethyldeoxyadenosine and N4-ethyldeoxycytidine by comparison with synthesized standards. These adducts were quantified in DNA isolated from oral cells collected from volunteers exposed to alcohol, revealing a significant increase after the exposure. In addition, 17 of the adducts identified in vitro were detected in these samples confirming our ability to more comprehensively characterize the DNA damage deriving from alcohol exposures.


2021 ◽  
Vol 344 ◽  
pp. 46-57
Author(s):  
Xi Cheng ◽  
Changcai Liu ◽  
Yang Yang ◽  
Longhui Liang ◽  
Bo Chen ◽  
...  
Keyword(s):  

Author(s):  
Dirk Steinritz ◽  
Robin Lüling ◽  
Markus Siegert ◽  
Julia Herbert ◽  
Harald Mückter ◽  
...  

AbstractSulfur mustard (SM) is a chemical warfare agent which use is banned under international law and that has been used recently in Northern Iraq and Syria by the so-called Islamic State. SM induces the alkylation of endogenous proteins like albumin and hemoglobin thus forming covalent adducts that are targeted by bioanalytical methods for the verification of systemic poisoning. We herein report a novel biomarker, namely creatine kinase (CK) B-type, suitable as a local biomarker for SM exposure on the skin. Human and rat skin were proven to contain CK B-type by Western blot analysis. Following exposure to SM ex vivo, the CK-adduct was extracted from homogenates by immunomagnetic separation and proteolyzed afterwards. The cysteine residue Cys282 was found to be alkylated by the SM-specific hydroxyethylthioethyl (HETE)-moiety detected as the biomarker tetrapeptide TC(-HETE)PS. A selective and sensitive micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HRMS) method was developed to monitor local CK-adducts in an in vivo study with rats percutaneously exposed to SM. CK-adduct formation was compared to already established DNA- and systemic albumin biomarkers. CK- and DNA-adducts were successfully detected in biopsies of exposed rat skin as well as albumin-adducts in plasma. Relative biomarker concentrations make the CK-adduct highly appropriate as a local dermal biomarker. In summary, CK or rather Cys282 in CK B-type was identified as a new, additional dermal target of local SM exposures. To our knowledge, it is also the first time that HETE-albumin adducts, and HETE-DNA adducts were monitored simultaneously in an in vivo animal study.


2021 ◽  
Vol 95 (2) ◽  
pp. 727-747
Author(s):  
Simone Rothmiller ◽  
Niklas Jäger ◽  
Nicole Meier ◽  
Thimo Meyer ◽  
Adrian Neu ◽  
...  

AbstractWound healing is a complex process, and disturbance of even a single mechanism can result in chronic ulcers developing after exposure to the alkylating agent sulfur mustard (SM). A possible contributor may be SM-induced chronic senescent mesenchymal stem cells (MSCs), unable to fulfil their regenerative role, by persisting over long time periods and creating a proinflammatory microenvironment. Here we show that senescence induction in human bone marrow derived MSCs was time- and concentration-dependent, and chronic senescence could be verified 3 weeks after exposure to between 10 and 40 µM SM. Morphological changes, reduced clonogenic and migration potential, longer scratch closure times, differences in senescence, motility and DNA damage response associated genes as well as increased levels of proinflammatory cytokines were revealed. Selective removal of these cells by senolytic drugs, in which ABT-263 showed initial potential in vitro, opens the possibility for an innovative treatment strategy for chronic wounds, but also tumors and age-related diseases.


2005 ◽  
Vol 3 (3-4) ◽  
pp. 179-190 ◽  
Author(s):  
Markus Galanski ◽  
Susanna Slaby ◽  
Michael A. Jakupec ◽  
Bernhard K. Keppler

In order to develop platinum complexes with selective activity in primary and secondary bone malignancies and with the aim to optimize antitumor activity, platinum(II) complexes with aminotris(methylenephosphonic acid) as bone-seeking (osteotropic) ligand have been synthesized, characterized and tested in the cisplatin-sensitive ovarian carcinoma cell line CH1. As non-leaving diamine ligands, which are decisive for the cellular processing of DNA adducts,cis-R,S-cyclohexane-1,2-diamine,trans-S,S-cyclohexane-1,2-diamine andtrans-R,R-cyclohexane-1,2-diamine have been used, resulting in complexes 1, 2, and 3, respectively. The cytotoxicity of the complexes under investigation decreases in the order 3>2>1 which is in accord with structure-activity relationships with other (cyclohexane-1,2- diamine)platinum(II) and platinum(IV) complexes: Bothtranscomplexes (2 and 3) display a higherin vitropotency than the correspondingcisisomer (I), with thetrans-R,Risomer (3) being the most active in this series. In comparison to the analogous (cyclohexane-1,2-diamine)platinum(II) complexes with bis(phosphonomethyl)aminoacetic acid as osteotropic carrier ligand, the cytotoxicity of 1-3 was found to be 1.5 – 2 fold higher, which is explainable by a different coordination mode of the phosphonic acid ligands (acetato versus phosphonato).


1996 ◽  
Vol 104 ◽  
pp. 687 ◽  
Author(s):  
K. Savela ◽  
M. J. Kohan ◽  
D. Walsh ◽  
F. P. Perera ◽  
K. Hemminki ◽  
...  

Author(s):  
Siyuan Zhou ◽  
Wangzi Li ◽  
Qi Zhao ◽  
Hongqiang Dong ◽  
Yueqi Wang ◽  
...  
Keyword(s):  

1980 ◽  
Vol 31 (1) ◽  
pp. 1-17 ◽  
Author(s):  
F.A. Beland ◽  
D.L. Tullis ◽  
F.F. Kadlubar ◽  
K.M. Straub ◽  
F.E. Evans
Keyword(s):  

1994 ◽  
Vol 15 (11) ◽  
pp. 2553-2558 ◽  
Author(s):  
Henrik Frandsen ◽  
Spiros Grivas ◽  
Robert J. Turesky ◽  
Rolf Andersson ◽  
Lars O. Dragsted ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document