Controls of Amorphous Organic Matter on the Hydrocarbon Generation Potential of Lacustrine Shales: A Case Study on the Chang 7 Member of Yanchang Formation, Ordos Basin, North China

2021 ◽  
Vol 35 (7) ◽  
pp. 5879-5888
Author(s):  
Juan Teng ◽  
Hucheng Deng ◽  
Yu Xia ◽  
Wenling Chen ◽  
Meiyan Fu
2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Lei Xiao ◽  
Zhuo Li ◽  
Yufei Hou ◽  
Liang Xu ◽  
Liwei Wang ◽  
...  

Organic macerals are the basic components of organic matter and play an important role in determining the hydrocarbon generation capacity of source rock. In this paper, organic geochemical analysis of shale in the Chang 7 member of the Yanchang Formation was carried out to evaluate the availability of source rock. The different organic macerals were effectively identified, and the differences in hydrocarbon generation and pore-forming capacities were discussed from two perspectives: microscopic pore development and macroscopic hydrocarbon generation through field emission scanning electron microscopy (FE-SEM) and energy-dispersive spectrum (EDS) analyses, methane isotherm adsorption, and on-site analysis of gas-bearing properties. The results show that the source rock of the Chang 7 member has a high abundance of organic matter and moderate thermal evolution and that the organic matter type is mainly type I. Based on the morphology of the organic matter and the element and pore development, four types of hydrogen-rich macerals, including sapropelite and exinite, and hydrogen-poor macerals, including vitrinite and inertinite, as well as the submacerals, algae, mineral asphalt matrix, sporophyte, resin, semifusinite, inertodetrinite, provitrinite, euvitrinite, and vitrodetrinite, can be identified through FE-SEM and EDS. A large number of honeycomb-shaped pores develop in sapropelite, and round-elliptical stomata develop in exinite, while vitrinite and inertinite do not develop organic matter pores. The hydrogen-rich maceral is the main component of organic macerals in the Chang 7 member of the Yanchang Formation. The weight percentage of carbon is low, so it has good hydrocarbon generation capacity, and the organic matter pores are developed and contribute 97% of the organic matter porosity, which is conducive to hydrocarbon generation and storage. The amount of hydrogen-poor maceral is low, and the weight percentage of carbon is low, and the organic matter pores are not developed, which is not conducive to hydrocarbon generation and storage.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ling Ma ◽  
Zhihuan Zhang ◽  
Weiqiu Meng

The Upper Triassic Chang 9 organic-rich sediments have been considered as effective hydrocarbon source rocks for the Mesozoic petroleum system in the Ordos Basin. Previous studies on the Chang 9 member mostly focused on the influence of their paleoproductivity and paleoredox conditions on the organic matter (OM) enrichment, whereas there are few studies on the influence of the paleoclimate condition and sediment provenance on the OM enrichment. In this study, a series of geochemical analyses was performed on the Chang 9 core samples, and their hydrocarbon generation potential, paleoclimate condition, and sediment provenance were assessed to analyze the effect of paleoclimate-provenance on OM enrichment. The Chang 9 source rocks are characterized by high OM abundance, type I−II OM type, and suitable thermal maturity, implying good hydrocarbon generation potential. Based on the C-values and Sr/Cu ratios, the paleoclimate condition of the Chang 9 member was mainly semihumid. In addition, the Th/Co vs. La/Sc diagram and negative δEuN indicate that the Chang 9 sediments were mainly derived from felsic source rocks. Meanwhile, the paleoweathering intensity of the Chang 9 member is moderate based on moderate values of CIA, PIA, and CIW, which corresponds to the semihumid paleoclimate. The relatively humid paleoclimate not only enhances photosynthesis of the primary producer, but also promotes chemical weathering intensity, leading to suitable terrestrial clastic influx to the lacustrine basin, which is beneficial for OM enrichment.


2020 ◽  
pp. 014459872097451
Author(s):  
Wenqi Jiang ◽  
Yunlong Zhang ◽  
Li Jiang

A fluid inclusion petrographic and microthermometric study was performed on the sandstones gathered from the Yanchang Formation, Jiyuan area of the Ordos Basin. Four types of fluid inclusions in quartz can be recognized based on the location they entrapped. The petrographic characteristics indicate that fluid inclusions in quartz overgrowth and quartz fissuring-I were trapped earlier than that in quartz fissuring-IIa and fissuring-IIb. The homogenization temperature values of the earlier fluid inclusions aggregate around 80 to 90°C; exclusively, it is slightly higher in Chang 6 member, which approaches 95°C. The later fluid inclusions demonstrate high homogenization temperatures, which range from 100 to 115°C, and the temperatures are slightly higher in Chang 9 member. The calculated salinities show differences between each member, including their regression characteristics with burial depth. Combining with the vitrinite reflection data, the sequence and parameters of fluid inclusions indicate that the thermal history of the Yanchang formation mostly relied on burial. Salinity changes were associated with fluid-rock interaction or fluid interruption. Hydrocarbon contained fluid inclusions imply that hydrocarbon generation and migration occurred in the Early Cretaceous. The occurrence of late fluid inclusions implied that quartz cement is a reservoir porosity-loose factor.


Sign in / Sign up

Export Citation Format

Share Document