Regeneration Characteristics of Elemental Sulfur-Modified Activated Carbon for Mercury Removal

Author(s):  
Cong Chen ◽  
Yufeng Duan ◽  
Tianfang Huang ◽  
Mingqing Zhu ◽  
Xiaoshuo Liu ◽  
...  
2018 ◽  
Vol 54 (4) ◽  
pp. 2836-2852 ◽  
Author(s):  
Changming Zhang ◽  
Wen Song ◽  
Xiaochao Zhang ◽  
Rui Li ◽  
Songjian Zhao ◽  
...  

Author(s):  
Mochammad Arief Budihardjo ◽  
Yudha Gusti Wibowo ◽  
Bimastyaji Surya Ramadan ◽  
Muhamad Allan Serunting ◽  
Eflita Yohana ◽  
...  

2019 ◽  
Vol 58 (29) ◽  
pp. 13190-13197 ◽  
Author(s):  
Cong Chen ◽  
Yufeng Duan ◽  
Shilin Zhao ◽  
Bin Hu ◽  
Na Li ◽  
...  

Author(s):  
Long Wu ◽  
Zhongsheng Shang ◽  
Hailu Zhu ◽  
Zhanyong Li ◽  
Guangqian Luo ◽  
...  

Abstract During the plasma modification process on activated carbon surface, reactive gas of O2 in the plasma field dominates the formation of oxygen-containing groups on activated carbon surface, which is a key factor that affects the mercury adsorption. Previous studies showed that change the O2 concentration would influence the generation of oxygen-containing groups and thus affect the mercury adsorption. It is important to investigate the effects of O2 concentration in the non-thermal plasma field on the mercury adsorption characteristic of modified activated carbon. This work presents the results of the novel use of non-thermal plasma in Ar-O2 gas to increase surface oxygen functionality on the surface of a commercially available biomass carbon. The volume fraction of O2 in the Ar-O2 mixture was varied from 10 % to 100 %. The surface physical and chemistry properties of modified activated carbon were analyzed by using BET, FT-IR and XPS techniques. Results showed that activated carbon modified by Ar-O2 non-thermal plasma showed significantly better mercury removal performance compared with the original activated carbon. Moreover, increase O2 concentration in the plasma field can further increase the mercury removal efficiency of modified activated carbon. Higher O2 concentration can produce more O radicals during plasma system and facilitated the formation of carbonyl and ester groups on activated carbon surface and thus enhanced the mercury removal. Temperature programmed desorption (TPD) results indicated that mercury reacted with ester groups were prior to carbonyl groups. When O2 concentration increased to 100 %, the ester groups of modified activated carbon dominated the mercury adsorption process.


2012 ◽  
Vol 11 (8) ◽  
pp. 1433-1438 ◽  
Author(s):  
Jinren Ni ◽  
Guangzhi Zhang ◽  
Hao Hu ◽  
Weiling Sun ◽  
Bin Zhao ◽  
...  

Author(s):  
Zhirui Li ◽  
Yuqi Jin ◽  
Tong Chen ◽  
Feng Tang ◽  
Jie Cai ◽  
...  

Heliyon ◽  
2021 ◽  
pp. e07191
Author(s):  
Fateme Barjasteh-Askari ◽  
Mojtaba Davoudi ◽  
Maryam Dolatabadi ◽  
Saeid Ahmadzadeh

2021 ◽  
Vol 46 ◽  
pp. 101476
Author(s):  
Azeem Sarwar ◽  
Majid Ali ◽  
Asif Hussain Khoja ◽  
Azra Nawar ◽  
Adeel Waqas ◽  
...  

2012 ◽  
Vol 1 (3) ◽  
pp. 75 ◽  
Author(s):  
W.D.P Rengga ◽  
M. Sudibandriyo ◽  
M Nasikin

Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that supports renewable energy. Keywords: adsorption; bamboo; formaldehyde; modified activated carbon; nano size particles


Sign in / Sign up

Export Citation Format

Share Document