scholarly journals Impact of Feedstock Properties on the Deactivation of a Vacuum Gas Oil Hydrocracking Catalyst

Author(s):  
July C. Vivas-Báez ◽  
Gerhard D. Pirngruber ◽  
Alberto Servia ◽  
Anne-Claire Dubreuil ◽  
David J. Pérez-Martínez
2020 ◽  
Vol 43 (11) ◽  
pp. 2224-2232
Author(s):  
Weimin Zhang ◽  
Bo Qin ◽  
Wenxi Li ◽  
Kaige Hou ◽  
Yanze Du ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7172
Author(s):  
Jakub Frątczak ◽  
Héctor de Paz Carmona ◽  
Zdeněk Tišler ◽  
José M. Hidalgo Herrador ◽  
Zahra Gholami

The Fischer–Tropsch heavy fraction is a potential feedstock for transport-fuels production through co-processing with fossil fuel fraction. However, there is still the need of developing new and green catalytic materials able to process this feedstock into valuable outputs. The present work studies the co-hydrocracking of the Fisher–Tropsch heavy fraction (FT-res.) with vacuum gas oil (VGO) at different ratios (FT-res. 9:1 VGO, FT-res. 7:3 VGO, and FT-res. 5:5 VGO) using phonolite-based catalysts (5Ni10W/Ph, 5Ni10Mo/Ph, and 5Co10Mo/Ph), paying attention to the overall conversion, yield, and selectivity of the products and properties. The co-processing experiments were carried out in an autoclave reactor at 450 °C, under 50 bars for 1 and 2 h. The phonolite-based catalysts were active in the hydrocracking of FT-res.:VGO mixtures, presenting different yields to gasoline, diesel, and jet fuel fractions, depending on the time of reaction and type of catalyst. Our results enable us to define the most suitable metal transition composition for the phonolite-based support as a hydrocracking catalyst.


Author(s):  
M I Farakhov ◽  
A G Laptev ◽  
T M Farakhov ◽  
A A Akhmitshin
Keyword(s):  

Author(s):  
Tareq A. Al-Attas ◽  
Rahima A. Lucky ◽  
Mohammed Mozahar Hossain
Keyword(s):  
Gas Oil ◽  

Author(s):  
Anton Alvarez-Majmutov ◽  
Sandeep Badoga ◽  
Jinwen Chen ◽  
Jacques Monnier ◽  
Yi Zhang
Keyword(s):  
Gas Oil ◽  

2013 ◽  
Vol 27 (6) ◽  
pp. 3306-3315 ◽  
Author(s):  
Jinwen Chen ◽  
Hena Farooqi ◽  
Craig Fairbridge

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4122
Author(s):  
Sarah A. Alkhalaf ◽  
Ahmed R. Ramadan ◽  
Christian Obuekwe ◽  
Ashraf M. El Nayal ◽  
Nasser Abotalib ◽  
...  

We followed a comparative approach to investigate how heavy vacuum gas oil (HVGO) affects the expression of genes involved in biosurfactants biosynthesis and the composition of the rhamnolipid congeners in Pseudomonas sp. AK6U. HVGO stimulated biosurfactants production as indicated by the lower surface tension (26 mN/m) and higher yield (7.8 g/L) compared to a glucose culture (49.7 mN/m, 0.305 g/L). Quantitative real-time PCR showed that the biosurfactants production genes rhlA and rhlB were strongly upregulated in the HVGO culture during the early and late exponential growth phases. To the contrary, the rhamnose biosynthesis genes algC, rmlA and rmlC were downregulated in the HVGO culture. Genes of the quorum sensing systems which regulate biosurfactants biosynthesis exhibited a hierarchical expression profile. The lasI gene was strongly upregulated (20-fold) in the HVGO culture during the early log phase, whereas both rhlI and pqsE were upregulated during the late log phase. Rhamnolipid congener analysis using high-performance liquid chromatography-mass spectrometry revealed a much higher proportion (up to 69%) of the high-molecularweight homologue Rha–Rha–C10–C10 in the HVGO culture. The results shed light on the temporal and carbon source-mediated shifts in rhamonlipids’ composition and regulation of biosynthesis which can be potentially exploited to produce different rhamnolipid formulations tailored for specific applications.


Energy ◽  
2021 ◽  
pp. 122912
Author(s):  
Shuai Zhang ◽  
Qingyu Lei ◽  
Le Wu ◽  
Yuqi Wang ◽  
Lan Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document