scholarly journals Hydrocracking of Heavy Fischer–Tropsch Wax Distillation Residues and Its Blends with Vacuum Gas Oil Using Phonolite-Based Catalysts

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7172
Author(s):  
Jakub Frątczak ◽  
Héctor de Paz Carmona ◽  
Zdeněk Tišler ◽  
José M. Hidalgo Herrador ◽  
Zahra Gholami

The Fischer–Tropsch heavy fraction is a potential feedstock for transport-fuels production through co-processing with fossil fuel fraction. However, there is still the need of developing new and green catalytic materials able to process this feedstock into valuable outputs. The present work studies the co-hydrocracking of the Fisher–Tropsch heavy fraction (FT-res.) with vacuum gas oil (VGO) at different ratios (FT-res. 9:1 VGO, FT-res. 7:3 VGO, and FT-res. 5:5 VGO) using phonolite-based catalysts (5Ni10W/Ph, 5Ni10Mo/Ph, and 5Co10Mo/Ph), paying attention to the overall conversion, yield, and selectivity of the products and properties. The co-processing experiments were carried out in an autoclave reactor at 450 °C, under 50 bars for 1 and 2 h. The phonolite-based catalysts were active in the hydrocracking of FT-res.:VGO mixtures, presenting different yields to gasoline, diesel, and jet fuel fractions, depending on the time of reaction and type of catalyst. Our results enable us to define the most suitable metal transition composition for the phonolite-based support as a hydrocracking catalyst.

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5497
Author(s):  
Olga Pleyer ◽  
Dan Vrtiška ◽  
Petr Straka ◽  
Aleš Vráblík ◽  
Jan Jenčík ◽  
...  

Catalytic hydrocracking represents an optimal process for both heavy petroleum fractions and Fischer–Tropsch (FT) wax upgrading because it offers high flexibility regarding the feedstock, reaction conditions and products’ quality. The hydrocracking of a heavy vacuum gas oil with FT wax was carried out in a continuous-flow catalytic unit with a fixed-bed reactor and a co-current flow of the feedstock and hydrogen at the reaction temperatures of 390, 400 and 410 °C and a pressure of 8 MPa. The increasing reaction temperature and content of the FT wax in the feedstock caused an increasing yield in the gaseous products and a decreasing yield in the liquid products. The utilisation of the higher reaction temperatures and feedstocks containing the FT wax showed a positive influence on the conversion of the fraction boiling above 400 °C to lighter fractions. Although the naphtha and middle distillate fractions obtained via atmospheric and vacuum distillations of the liquid products of hydrocracking did not comply with the particular quality standards of automotive gasolines and diesel fuels, the obtained products still present valuable materials which could be utilised within an oil refinery and in the petrochemical industry.


2020 ◽  
Vol 43 (11) ◽  
pp. 2224-2232
Author(s):  
Weimin Zhang ◽  
Bo Qin ◽  
Wenxi Li ◽  
Kaige Hou ◽  
Yanze Du ◽  
...  

2018 ◽  
Vol 97 (S1) ◽  
pp. 1515-1524 ◽  
Author(s):  
Tingyong Xing ◽  
Antonio G. De Crisci ◽  
Jinwen Chen

Author(s):  
July C. Vivas-Báez ◽  
Gerhard D. Pirngruber ◽  
Alberto Servia ◽  
Anne-Claire Dubreuil ◽  
David J. Pérez-Martínez

Author(s):  
M I Farakhov ◽  
A G Laptev ◽  
T M Farakhov ◽  
A A Akhmitshin
Keyword(s):  

Fuel ◽  
2021 ◽  
Vol 300 ◽  
pp. 121008
Author(s):  
Sundaramurthy Vedachalam ◽  
Philip Boahene ◽  
Ajay K. Dalai

Author(s):  
Tareq A. Al-Attas ◽  
Rahima A. Lucky ◽  
Mohammed Mozahar Hossain
Keyword(s):  
Gas Oil ◽  

Sign in / Sign up

Export Citation Format

Share Document