Nanopore Size Distribution Heterogeneity of Organic-Rich Shale Reservoirs Using Multifractal Analysis and Its Influence on Porosity–Permeability Variation

Author(s):  
Gaoyuan Yan ◽  
Zhengyuan Qin ◽  
Stuart Marsh ◽  
Stephen Grebby ◽  
Yi Mou ◽  
...  
Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Dengke Liu ◽  
Tao Tian ◽  
Ruixiang Liang ◽  
Fu Yang ◽  
Feng Ye

Understanding pore structure would enable us to obtain a deeper insight into the fluid mechanism in porous media. In this research, multifractal analysis by various experiments is employed to analyze the pore structure and heterogeneity characterization in the source rock in Ordos Basin, China. For this purpose, imaging apparatus, intrusion tests, and nonintrusion methods have been used. The results show that the objective shale reservoir contains complex pore network, and minor pores dominant the pore system. Both intrusion and nonintrusion methods detected pore size distributions show multifractal nature, while the former one demonstrates more heterogeneous features. The pore size distributions acquired by low temperature adsorption and nuclear magnetic resonance have relatively good consistence, indicating that similar pore network detection method may share the same mechanism, and the full-ranged pore size distributions need to be acquired by multitechniques. Chlorite has an obvious impact on the heterogeneity of pore structure in narrow pore size range, while illite and I/S mixed layer influence that in wide range. Kerogen index is the fundamental indicators of geochemical parameters. With the decrease of averaged small and middle/large pore radius, the heterogeneity of pore structures increase in narrow and wide ranges, respectively. This work employed a comprehensive methodology based on multitechniques and helps to explore how pore networks affect reservoir quality in shale reservoirs.


2012 ◽  
Vol 13 ◽  
pp. 2394-2401 ◽  
Author(s):  
Zhiming Zhang ◽  
Baoshan Cui ◽  
Fengman Fang ◽  
Xiaoyun Fan ◽  
Honggang Zhang

2017 ◽  
Vol 57 (2) ◽  
pp. 660
Author(s):  
M. Nadia Testamanti ◽  
Reza Rezaee ◽  
Jie Zou

The evaluation of the gas storage potential of shale reservoirs requires a good understanding of their pore network. Each of the laboratory techniques used for pore characterisation can be applied to a specific range of pore sizes; but if the lithology of the rock is known, usually one suitable method can be selected to investigate its pore system. Shales do not fall under any particular lithological classification and can have a wide range of minerals present, so a combination of at least two methods is typically recommended for a better understanding of their pore network. In the laboratory, the Low-Pressure Nitrogen Gas Adsorption (LP-N2-GA) technique is typically used to examine micropores and mesopores, and Mercury Injection Capillary Pressure (MICP) tests can identify pore throats larger than 3 nm. In contrast, a wider range of pore sizes in rock can be screened with Nuclear Magnetic Resonance (NMR), either in laboratory measurements made on cores or through well logging, provided that the pores are saturated with a fluid. The pore network of a set of shale core samples from the Carynginia Formation was investigated using a combination of laboratory methods. The cores were studied using the NMR, LP-N2-GA and MICP techniques, and the experimental porosity and pore size distribution results are presented. When NMR results were calibrated with MICP or LP-N2-GA measurements, then the pore size distribution of the shale samples studied could be estimated.


Meat Science ◽  
2009 ◽  
Vol 83 (4) ◽  
pp. 713-722 ◽  
Author(s):  
Fernando Mendoza ◽  
Nektarios A. Valous ◽  
Da-Wen Sun ◽  
Paul Allen

SPE Journal ◽  
2020 ◽  
Vol 25 (03) ◽  
pp. 1406-1415
Author(s):  
Sheng Luo ◽  
Jodie L. Lutkenhaus ◽  
Hadi Nasrabadi

Summary The improved oil recovery (IOR) of unconventional shale reservoirs has attracted much interest in recent years. Gas injection, such as carbon dioxide (CO2) and natural gas, is one of the most considered techniques for its sweep efficiency and effectiveness in low-permeability reservoirs. However, the uncertainties of fluid phase behavior in shale reservoirs pose a great challenge in evaluating the performance of a gas-injection operation. Shale reservoirs typically have macroscale to nanoscale pore-size distribution in the porous space. In fractures and macropores, the fluid shows bulk behavior, but in nanopores, the phase behavior is significantly altered by the confinement effect. The integrated behavior of reservoir fluids in this complex environment remains uncertain. In this study, we investigate the nanoscale pore-size-distribution effect on the phase behavior of reservoir fluids in gas injection for shale reservoirs. A case of Anadarko Basin shale oil is used. The pore-size distribution is discretized as a multiscale system with pores of specific diameters. The phase equilibria of methane injection into the multiscale system are calculated. The constant-composition expansions are simulated for oil mixed with various fractions of injected gas. It is found that fluid in nanopores becomes supercritical with injected gas, but lowering the pressure to less than the bubblepoint turns it into the subcritical state. The bubblepoint is generally lower than the bulk and the degree of deviation depends on the amount of injected gas. The modeling of confined-fluid swelling shows that fluid swelled from nanopores is predicted to contain more oil than the swelled fluid at bulk state.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


Sign in / Sign up

Export Citation Format

Share Document