Numerical Solution of the Mathematical Model for Constant Pressure Gas Desorption in a Coal Matrix

Author(s):  
Fan Wu ◽  
Yueping Qin ◽  
Hao Xu ◽  
Fengjie Zhang ◽  
Xiangyu Chu
Author(s):  
Petro Martyniuk ◽  
Oksana Ostapchuk ◽  
Vitalii Nalyvaiko

The problem of pollution transfer by water flow in open channel was considered. The mathematical model of the problem was constructed. The numerical solution of the onedimensional boundary problem was obtained. The computational algorithm for solving the problem was programmed to implement. A series of numerical experiments with their further analysis was conducted.


2014 ◽  
Vol 945-949 ◽  
pp. 1461-1464
Author(s):  
Han Yu Jin ◽  
Xiu Sheng Cheng ◽  
Xiu Feng Song

The working principle of wet clutch was analyzed and the mathematical model was established for torque deliver. Experimental verification and simulation analysis was carried out for the clutch model in the situation of constant pressure engaging process. An efficiency examination of wet clutch implemented on the test rig and provided theory evidence for pressure precisely control.


Author(s):  
Imam Basuki ◽  
C Cari ◽  
A Suparmi

<p class="Normal1"><strong><em>Abstract: </em></strong><em>Partial Differential Equations (PDP) Laplace equation can be applied to the heat conduction. Heat conduction is a process that if two materials or two-part temperature material is contacted with another it will pass heat transfer. Conduction of heat in a triangle shaped object has a mathematical model in Cartesian coordinates. However, to facilitate the calculation, the mathematical model of heat conduction is transformed into the coordinates of the triangle. PDP numerical solution of Laplace solved using the finite difference method. Simulations performed on a triangle with some angle values α and β</em></p><p class="Normal1"><strong><em> </em></strong></p><p class="Normal1"><strong><em>Keywords:</em></strong><em>  heat transfer, triangle coordinates system.</em></p><p class="Normal1"><em> </em></p><p class="Normal1"><strong>Abstrak</strong> Persamaan Diferensial Parsial (PDP) Laplace  dapat diaplikasikan pada persamaan konduksi panas. Konduksi panas adalah suatu proses yang jika dua materi atau dua bagian materi temperaturnya disentuhkan dengan yang lainnya maka akan terjadilah perpindahan panas. Konduksi panas pada benda berbentuk segitiga mempunyai model matematika dalam koordinat cartesius. Namun untuk memudahkan perhitungan, model matematika konduksi panas tersebut ditransformasikan ke dalam koordinat segitiga. Penyelesaian numerik dari PDP Laplace diselesaikan menggunakan metode beda hingga. Simulasi dilakukan pada segitiga dengan beberapa nilai sudut  dan  </p><p class="Normal1"><strong> </strong></p><p class="Normal1"><strong>Kata kunci :</strong> perpindahan panas, sistem koordinat segitiga.</p>


2019 ◽  
Vol 4 (1) ◽  
pp. 269-282
Author(s):  
L.Y. Levin ◽  
◽  
M.A. Semin ◽  
A.V. Bogomyagkov ◽  
O.S. Parshakov ◽  
...  

The paper presents general information about the software application “Frozen Wall ”, which was designed to simulate frozen wall formation around constructed vertical shafts. The main feature of the developed application is the possibility of calibrating the mathematical model for the best fit with the experimental temperature measurements by numerical solution of the inverse Stefan problem. In addition, it takes into account a number of technological processes that affect the state of the frozen wall. Based on calculations performed in the application, it is possible to develop technical measures aimed at ensuring the efficiency of mine shafts construction in difficult hydrogeological conditions.


2021 ◽  
Vol 252 ◽  
pp. 02046
Author(s):  
Wei Xiong

Considered the characteristics of porous medium in the coal seam and goaf, in order to reflect the accurately influence of various porous media against the gas flow, the mathematical model of discrete multi-scale network and macroscopic flow, CFCM (Coal-Fracture-Cavity-Model), was presented. The porous medium is classified into coal matrix, fracture and hole systems based on the size, and the coal matrix system includes micro fractures and micro-porous. The coal matrix system and fracture system can be regarded as diffusion and percolation areas; hole system can be regarded as a free-flowing area. The computation model of flow field in micro-scale, small-scale and large-scale are obtained according the Fick’s diffusion law, Darcy’s permeability law and Forchheimer generalized Darcy law respectively, the homogenization method is used to analyse the mathematical model by scale upgrading and the equivalent Darcy’s fluid equation of porous medium is got to describe the characteristics of the medium in the flow field accurately. An example calculated shows that the coal matrix and fracture systems are the most influential factors of the flow field in goaf and the two systems above would prevent the diffusion of airflow. The study validates the correctness of the classification method and the model of flow equation.


2018 ◽  
Vol 8 (10) ◽  
pp. 1759 ◽  
Author(s):  
Yi Yang ◽  
Qianbin Li ◽  
Xuefeng Chen

This paper is aimed to obtain the instantaneous availabilities (IAs) for the two-unit series system and parallel system with three states. By the compound S i m p s o n formula and the compound trapezoidal formula, we get the numerical solution of IA for the two-unit series system with three states based on the renewal process. With four-order R u n g e - K u t t a formula, the numerical solution of IA for the two-unit parallel system with three states is obtained based on the Markov process.


2014 ◽  
Vol 501-504 ◽  
pp. 518-522
Author(s):  
Hua Zhang ◽  
Li Huang

The piecewise continuum technique was used for the frame structure and a series-parallel system was taken for the mathematical model for the structure in which the deformation of floor slab had to be considered, and its state space equations were derived. Then the numerical solution of deformations and internal forces were obtained by using of state method. It is shown that the method of this paper has the advantages of less computation work and high precision.


Sign in / Sign up

Export Citation Format

Share Document