scholarly journals Abiotic Nitrous Oxide (N2O) Production Is Strongly pH Dependent, but Contributes Little to Overall N2O Emissions in Biological Nitrogen Removal Systems

2019 ◽  
Vol 53 (7) ◽  
pp. 3508-3516 ◽  
Author(s):  
Qingxian Su ◽  
Carlos Domingo-Félez ◽  
Marlene Mark Jensen ◽  
Barth F. Smets
Author(s):  
Larissa Coelho Auto Gomes ◽  
Barbara Costa Pereira ◽  
Renato Pereira Ribeiro ◽  
Jaime Lopes da Mota Oliveira

Biological wastewater treatment processes with biological nitrogen removal are potential sources of nitrous oxide (N2O) emissions. It is important to expand knowledge on the controlling factors associated with N2O production, in order to propose emission mitigation strategies. This study therefore sought to identify the parameters that favor nitrite (NO2-) accumulation and its influence on N2O production and emission in an anaerobic/aerobic/anoxic/aerobic sequencing batch reactor with biological nitrogen removal. Even with controlled dissolved oxygen concentrations and oxidation reduction potential, the first aerobic phase promoted only partial nitrification, resulting in NO2- build-up (ranging from 29 to 57%) and consequent N2O generation. The NO2- was not fully consumed in the subsequent anoxic phase, leading to even greater N2O production through partial denitrification. A direct relationship was observed between NO2- accumulation in these phases and N2O production. In the first aerobic phase, the N2O/NO2- ratio varied between 0.5 to 8.5%, while in the anoxic one values ranged between 8.3 and 22.7%. Higher N2O production was therefore noted during the anoxic phase compared to the first aerobic phase. As a result, the highest N2O fluxes occurred in the second aerobic phase, ranging from 706 to 2416 mg N m-2 h-1, as soon as aeration was triggered. Complete nitrification and denitrification promotion in this system was proven to be the key factor to avoid NO2- build-up and, consequently, N2O emissions.


2011 ◽  
Vol 39 (6) ◽  
pp. 1832-1837 ◽  
Author(s):  
Kartik Chandran ◽  
Lisa Y. Stein ◽  
Martin G. Klotz ◽  
Mark C.M. van Loosdrecht

Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO2−) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N2O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O2) is associated with N2O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N2O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N2O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N2O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N2O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.


Sign in / Sign up

Export Citation Format

Share Document