Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems

2011 ◽  
Vol 39 (6) ◽  
pp. 1832-1837 ◽  
Author(s):  
Kartik Chandran ◽  
Lisa Y. Stein ◽  
Martin G. Klotz ◽  
Mark C.M. van Loosdrecht

Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO2−) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N2O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O2) is associated with N2O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N2O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N2O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N2O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N2O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.

10.29007/w6rq ◽  
2018 ◽  
Author(s):  
Theoni Massara ◽  
Borja Solis Duran ◽  
Albert Guisasola ◽  
Evina Katsou ◽  
Juan Antonio Baeza

Nitrous oxide (N2O), a greenhouse gas with a significant global warming potential, can be produced during the biological nutrient removal in wastewater treatment plants (WWTPs). N2O modelling under dynamic conditions is of vital importance for its mitigation. Following the activated sludge models (ASM) layout, an ASM-type model was developed considering three biological N2O production pathways for a municipal anaerobic/anoxic/aerobic (A2/O) WWTP performing chemical oxygen demand, nitrogen and phosphorus removal. Precisely, the N2O production pathways included were: nitrifier denitrification, hydroxylamine oxidation, and heterotrophic denitrification, with the first two linked to the ammonia oxidizing bacteria (AOB) activity. A stripping effectivity (SE) factor was used to mark the non-ideality of the stripping modelling. With the dissolved oxygen (DO) in the aerobic compartment ranging from 1.8 to 2.5 mg L-1, partial nitrification and high N2O production via nitrifier denitrification occurred. Therefore, low aeration strategies can effectively lead to a low overall carbon footprint only if complete nitrification is guaranteed. After suddenly increasing the influent ammonium load, the AOB had a greater growth compared to the NOB. N2O hotspot was again nitrifier denitrification. Especially under concurring partial nitrification and high stripping (i.e. combination of low DO and high SEs), the highest N2O emission factors were noted.


Author(s):  
Larissa Coelho Auto Gomes ◽  
Barbara Costa Pereira ◽  
Renato Pereira Ribeiro ◽  
Jaime Lopes da Mota Oliveira

Biological wastewater treatment processes with biological nitrogen removal are potential sources of nitrous oxide (N2O) emissions. It is important to expand knowledge on the controlling factors associated with N2O production, in order to propose emission mitigation strategies. This study therefore sought to identify the parameters that favor nitrite (NO2-) accumulation and its influence on N2O production and emission in an anaerobic/aerobic/anoxic/aerobic sequencing batch reactor with biological nitrogen removal. Even with controlled dissolved oxygen concentrations and oxidation reduction potential, the first aerobic phase promoted only partial nitrification, resulting in NO2- build-up (ranging from 29 to 57%) and consequent N2O generation. The NO2- was not fully consumed in the subsequent anoxic phase, leading to even greater N2O production through partial denitrification. A direct relationship was observed between NO2- accumulation in these phases and N2O production. In the first aerobic phase, the N2O/NO2- ratio varied between 0.5 to 8.5%, while in the anoxic one values ranged between 8.3 and 22.7%. Higher N2O production was therefore noted during the anoxic phase compared to the first aerobic phase. As a result, the highest N2O fluxes occurred in the second aerobic phase, ranging from 706 to 2416 mg N m-2 h-1, as soon as aeration was triggered. Complete nitrification and denitrification promotion in this system was proven to be the key factor to avoid NO2- build-up and, consequently, N2O emissions.


2018 ◽  
Vol 15 (20) ◽  
pp. 6127-6138 ◽  
Author(s):  
Qixing Ji ◽  
Claudia Frey ◽  
Xin Sun ◽  
Melanie Jackson ◽  
Yea-Shine Lee ◽  
...  

Abstract. Nitrous oxide (N2O) is a greenhouse gas and an ozone depletion agent. Estuaries that are subject to seasonal anoxia are generally regarded as N2O sources. However, insufficient understanding of the environmental controls on N2O production results in large uncertainty about the estuarine contribution to the global N2O budget. Incubation experiments with nitrogen stable isotope tracer were used to investigate the geochemical factors controlling N2O production from denitrification in the Chesapeake Bay, the largest estuary in North America. The highest potential rates of water column N2O production via denitrification (7.5±1.2 nmol-N L−1 h−1) were detected during summer anoxia, during which oxidized nitrogen species (nitrate and nitrite) were absent from the water column. At the top of the anoxic layer, N2O production from denitrification was stimulated by addition of nitrate and nitrite. The relative contribution of nitrate and nitrite to N2O production was positively correlated with the ratio of nitrate to nitrite concentrations. Increased oxygen availability, up to 7 µmol L−1 oxygen, inhibited both N2O production and the reduction of nitrate to nitrite. In spring, high oxygen and low abundance of denitrifying microbes resulted in undetectable N2O production from denitrification. Thus, decreasing the nitrogen input into the Chesapeake Bay has two potential impacts on the N2O production: a lower availability of nitrogen substrates may mitigate short-term N2O emissions during summer anoxia; and, in the long-run (timescale of years), eutrophication will be alleviated and subsequent reoxygenation of the bay will further inhibit N2O production.


2012 ◽  
Vol 9 (8) ◽  
pp. 2989-3002 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during spring 2009 were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil conditions due to the absence of rain during the four previous weeks. Cumulative annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 598 ◽  
Author(s):  
Peter Grace ◽  
Iurii Shcherbak ◽  
Ben Macdonald ◽  
Clemens Scheer ◽  
David Rowlings

As a significant user of nitrogen (N) fertilisers, the Australian cotton industry is a major source of soil-derived nitrous oxide (N2O) emissions. A country-specific (Tier 2) fertiliser-induced emission factor (EF) can be used in national greenhouse gas inventories or in the development of N2O emissions offset methodologies provided the EFs are evidence based. A meta-analysis was performed using eight individual N2O emission studies from Australian cotton studies to estimate EFs. Annual N2O emissions from cotton grown on Vertosols ranged from 0.59kgNha–1 in a 0N control to 1.94kgNha–1 in a treatment receiving 270kgNha–1. Seasonal N2O estimates ranged from 0.51kgNha–1 in a 0N control to 10.64kgNha–1 in response to the addition of 320kgNha–1. A two-component (linear+exponential) statistical model, namely EF (%)=0.29+0.007(e0.037N – 1)/N, capped at 300kgNha–1 describes the N2O emissions from lower N rates better than an exponential model and aligns with an EF of 0.55% using a traditional linear regression model.


Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 165 ◽  
Author(s):  
Ram C. Dalal ◽  
Weijin Wang ◽  
G. Philip Robertson ◽  
William J. Parton

Increases in the concentrations of greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and halocarbons in the atmosphere due to human activities are associated with global climate change. The concentration of N2O has increased by 16% since 1750. Although atmospheric concentration of N2O is much smaller (314 ppb in 1998) than of CO2 (365 ppm), its global warming potential (cumulative radiative forcing) is 296 times that of the latter in a 100-year time horizon. Currently, it contributes about 6% of the overall global warming effect but its contribution from the agricultural sector is about 16%. Of that, almost 80% of N2O is emitted from Australian agricultural lands, originating from N fertilisers (32%), soil disturbance (38%), and animal waste (30%). Nitrous oxide is primarily produced in soil by the activities of microorganisms during nitrification, and denitrification processes. The ratio of N2O to N2 production depends on oxygen supply or water-filled pore space, decomposable organic carbon, N substrate supply, temperature, and pH and salinity. N2O production from soil is sporadic both in time and space, and therefore, it is a challenge to scale up the measurements of N2O emission from a given location and time to regional and national levels.Estimates of N2O emissions from various agricultural systems vary widely. For example, in flooded rice in the Riverina Plains, N2O emissions ranged from 0.02% to 1.4% of fertiliser N applied, whereas in irrigated sugarcane crops, 15.4% of fertiliser was lost over a 4-day period. Nitrous oxide emissions from fertilised dairy pasture soils in Victoria range from 6 to 11 kg N2O-N/ha, whereas in arable cereal cropping, N2O emissions range from <0.01% to 9.9% of N fertiliser applications. Nitrous oxide emissions from soil nitrite and nitrates resulting from residual fertiliser and legumes are rarely studied but probably exceed those from fertilisers, due to frequent wetting and drying cycles over a longer period and larger area. In ley cropping systems, significant N2O losses could occur, from the accumulation of mainly nitrate-N, following mineralisation of organic N from legume-based pastures. Extensive grazed pastures and rangelands contribute annually about 0.2 kg N/ha as N2O (93 kg/ha per year CO2-equivalent). Tropical savannas probably contribute an order of magnitude more, including that from frequent fires. Unfertilised forestry systems may emit less but the fertilised plantations emit more N2O than the extensive grazed pastures. However, currently there are limited data to quantify N2O losses in systems under ley cropping, tropical savannas, and forestry in Australia. Overall, there is a need to examine the emission factors used in estimating national N2O emissions; for example, 1.25% of fertiliser or animal-excreted N appearing as N2O (IPCC 1996). The primary consideration for mitigating N2O emissions from agricultural lands is to match the supply of mineral N (from fertiliser applications, legume-fixed N, organic matter, or manures) to its spatial and temporal needs by crops/pastures/trees. Thus, when appropriate, mineral N supply should be regulated through slow-release (urease and/or nitrification inhibitors, physical coatings, or high C/N ratio materials) or split fertiliser application. Also, N use could be maximised by balancing other nutrient supplies to plants. Moreover, non-legume cover crops could be used to take up residual mineral N following N-fertilised main crops or mineral N accumulated following legume leys. For manure management, the most effective practice is the early application and immediate incorporation of manure into soil to reduce direct N2O emissions as well as secondary emissions from deposition of ammonia volatilised from manure and urine.Current models such as DNDC and DAYCENT can be used to simulate N2O production from soil after parameterisation with the local data, and appropriate modification and verification against the measured N2O emissions under different management practices.In summary, improved estimates of N2O emission from agricultural lands and mitigation options can be achieved by a directed national research program that is of considerable duration, covers sampling season and climate, and combines different techniques (chamber and micrometeorological) using high precision analytical instruments and simulation modelling, under a range of strategic activities in the agriculture sector.


2013 ◽  
Vol 47 (14) ◽  
pp. 7795-7803 ◽  
Author(s):  
Bing-Jie Ni ◽  
Liu Ye ◽  
Yingyu Law ◽  
Craig Byers ◽  
Zhiguo Yuan

2010 ◽  
Vol 7 (9) ◽  
pp. 2695-2709 ◽  
Author(s):  
C. H. Frame ◽  
K. L. Casciotti

Abstract. Nitrous oxide (N2O) is a trace gas that contributes to the greenhouse effect and stratospheric ozone depletion. The N2O yield from nitrification (moles N2O-N produced per mole ammonium-N consumed) has been used to estimate marine N2O production rates from measured nitrification rates and global estimates of oceanic export production. However, the N2O yield from nitrification is not constant. Previous culture-based measurements indicate that N2O yield increases as oxygen (O2) concentration decreases and as nitrite (NO2−) concentration increases. Here, we have measured yields of N2O from cultures of the marine β-proteobacterium Nitrosomonas marina C-113a as they grew on low-ammonium (50 μM) media. These yields, which were typically between 4 × 10−4 and 7 × 10−4 for cultures with cell densities between 2 × 102 and 2.1 × 104 cells ml−1, were lower than previous reports for ammonia-oxidizing bacteria. The observed impact of O2 concentration on yield was also smaller than previously reported under all conditions except at high starting cell densities (1.5 × 106 cells ml−1), where 160-fold higher yields were observed at 0.5% O2 (5.1 μM dissolved O2) compared with 20% O2 (203 μM dissolved O2). At lower cell densities (2 × 102 and 2.1 × 104 cells ml−1), cultures grown under 0.5% O2 had yields that were only 1.25- to 1.73-fold higher than cultures grown under 20% O2. Thus, previously reported many-fold increases in N2O yield with dropping O2 could be reproduced only at cell densities that far exceeded those of ammonia oxidizers in the ocean. The presence of excess NO2− (up to 1 mM) in the growth medium also increased N2O yields by an average of 70% to 87% depending on O2 concentration. We made stable isotopic measurements on N2O from these cultures to identify the biochemical mechanisms behind variations in N2O yield. Based on measurements of δ15Nbulk, site preference (SP = δ15Nα−δ15Nβ), and δ18O of N2O (δ18O-N2O), we estimate that nitrifier-denitrification produced between 11% and 26% of N2O from cultures grown under 20% O2 and 43% to 87% under 0.5% O2. We also demonstrate that a positive correlation between SP and δ18O-N2O is expected when nitrifying bacteria produce N2O. A positive relationship between SP and δ18O-N2O has been observed in environmental N2O datasets, but until now, explanations for the observation invoked only denitrification. Such interpretations may overestimate the role of heterotrophic denitrification and underestimate the role of ammonia oxidation in environmental N2O production.


2017 ◽  
Vol 76 (12) ◽  
pp. 3468-3477 ◽  
Author(s):  
Weixing Mi ◽  
Jianqiang Zhao ◽  
Xiaoqian Ding ◽  
Guanghuan Ge ◽  
Rixiang Zhao

Abstract To investigate the characteristics of anaerobic ammonia oxidation for treating low-ammonium wastewater, a continuous-flow completely autotrophic nitrogen removal over nitrite (CANON) biofilm reactor was studied. At a temperature of 32 ± 1 °C and a pH between 7.5 and 8.2, two operational experiments were performed: the first one fixed the hydraulic retention time (HRT) at 10 h and gradually reduced the influent ammonium concentrations from 210 to 50 mg L−1; the second one fixed the influent ammonium concentration at 30 mg L−1 and gradually decreased the HRT from 10 to 3 h. The results revealed that the total nitrogen removal efficiency exceeded 80%, with a corresponding total nitrogen removal rate of 0.26 ± 0.01 kg N m−3 d−1 at the final low ammonium concentration of 30 mg L−1. Small amounts of nitrous oxide (N2O) up to 0.015 ± 0.004 kg m−3 d−1 at the ammonium concentration of 210 mg L−1 were produced in the CANON process and decreased with the decrease in the influent ammonium loads. High-throughput pyrosequencing analysis indicated that the dominant functional bacteria ‘Candidatus Kuenenia’ under high influent ammonium levels were gradually succeeded by Armatimonadetes_gp5 under low influent ammonium levels.


Sign in / Sign up

Export Citation Format

Share Document