Optimizing Potable Water Reuse Systems: Chloramines or Hydrogen Peroxide for UV-Based Advanced Oxidation Process?

2019 ◽  
Vol 53 (22) ◽  
pp. 13323-13331 ◽  
Author(s):  
Kiranmayi P. Mangalgiri ◽  
Samuel Patton ◽  
Liang Wu ◽  
Shanhui Xu ◽  
Kenneth P. Ishida ◽  
...  
Author(s):  
André F. Rossi ◽  
Rui C. Martins ◽  
Rosa M. Quinta-Ferreira

AbstractFenton’s reaction is an advanced oxidation process where, classically, hydrogen peroxide is the oxidizing agent and an iron catalyst promotes the formation of hydroxyl radicals (•OH). Among the studies that evaluated different metals as Fenton-like catalysts, our group of investigation has recently used cerium-based solids as heterogeneous catalysts in slurry reaction and, in this work, iron sludge coming from an industrial Fenton’s reactor used for the wastewater depuration of a detergent production factory is being appraised while treating a synthetic effluent containing 0.1 g.L


Author(s):  
André Gadelha de Oliveira ◽  
Jefferson Pereira Ribeiro ◽  
Juliene Tome de Oliveira ◽  
Denis De Keukeleire ◽  
Maíra Saldanha Duarte ◽  
...  

AbstractThis study investigates the use of an advanced oxidation process (AOP) for removal of the pesticide chlorpyrifos in a recirculated system, especially considering the effects of temperature, hydrogen peroxide dosage, pH, pesticide concentration and added inorganic anions. The results indicate that a temperature of 45 °C gave the best performance using only UV-radiation, while for the UV/H


Author(s):  
Phalguni Banerjee ◽  
Sunando DasGupta ◽  
Sirshendu De

An advanced oxidation study using Fenton's reagent, i.e., ferrous sulfate and hydrogen peroxide was carried out for studying oxidation of eosin dye. Effects of concentration of various reagents on the degradation of dye were explored during an advanced oxidation process. It was found that ferrous concentration plays a major role in dye decomposition. Rate of dye decomposition is faster with an increase in ferrous sulfate concentration compared to the increase in hydrogen peroxide concentration. A detailed kinetic model was proposed. Profiles for eosin, hydrogen peroxide and various intermediates were also generated. The rate constant of the reaction of eosin with a hydroxyl radical was found to be of the order of 109 l/mol.s.


Sign in / Sign up

Export Citation Format

Share Document