Kinetic Study of Advanced Oxidation of Eosin Dye by Fenton's Reagent

Author(s):  
Phalguni Banerjee ◽  
Sunando DasGupta ◽  
Sirshendu De

An advanced oxidation study using Fenton's reagent, i.e., ferrous sulfate and hydrogen peroxide was carried out for studying oxidation of eosin dye. Effects of concentration of various reagents on the degradation of dye were explored during an advanced oxidation process. It was found that ferrous concentration plays a major role in dye decomposition. Rate of dye decomposition is faster with an increase in ferrous sulfate concentration compared to the increase in hydrogen peroxide concentration. A detailed kinetic model was proposed. Profiles for eosin, hydrogen peroxide and various intermediates were also generated. The rate constant of the reaction of eosin with a hydroxyl radical was found to be of the order of 109 l/mol.s.

2019 ◽  
Vol 53 (22) ◽  
pp. 13323-13331 ◽  
Author(s):  
Kiranmayi P. Mangalgiri ◽  
Samuel Patton ◽  
Liang Wu ◽  
Shanhui Xu ◽  
Kenneth P. Ishida ◽  
...  

Author(s):  
André F. Rossi ◽  
Rui C. Martins ◽  
Rosa M. Quinta-Ferreira

AbstractFenton’s reaction is an advanced oxidation process where, classically, hydrogen peroxide is the oxidizing agent and an iron catalyst promotes the formation of hydroxyl radicals (•OH). Among the studies that evaluated different metals as Fenton-like catalysts, our group of investigation has recently used cerium-based solids as heterogeneous catalysts in slurry reaction and, in this work, iron sludge coming from an industrial Fenton’s reactor used for the wastewater depuration of a detergent production factory is being appraised while treating a synthetic effluent containing 0.1 g.L


Author(s):  
André Gadelha de Oliveira ◽  
Jefferson Pereira Ribeiro ◽  
Juliene Tome de Oliveira ◽  
Denis De Keukeleire ◽  
Maíra Saldanha Duarte ◽  
...  

AbstractThis study investigates the use of an advanced oxidation process (AOP) for removal of the pesticide chlorpyrifos in a recirculated system, especially considering the effects of temperature, hydrogen peroxide dosage, pH, pesticide concentration and added inorganic anions. The results indicate that a temperature of 45 °C gave the best performance using only UV-radiation, while for the UV/H


2013 ◽  
Vol 39 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Barbara Pieczykolan ◽  
Izabela Płonka ◽  
Krzysztof Barbusiński ◽  
Magdalena Amalio-Kosel

Abstract Treatment of leachate from an exploited since 2004 landfill by using two methods of advanced oxidation processes was performed. Fenton’s reagent with two different doses of hydrogen peroxide and iron and UV/H2O2 process was applied. The removal efficiency of biochemically oxidizable organic compounds (BOD5), chemically oxidizable compounds using potassium dichromate (CODCr) and nutrient (nitrogen and phosphorus) was examined. Studies have shown that the greatest degree of organic compounds removal expressed as a BOD5 index and CODCr index were obtained when Fenton’s reagent with greater dose of hydrogen peroxide was used - efficiency was respectively 72.0% and 69.8%. Moreover, in this case there was observed an increase in the value of ratio of BOD5/CODCr in treated leachate in comparison with raw leachate. Application of Fenton’s reagent for leachate treatment also allowed for more effective removal of nutrients in comparison with the UV/H2O2 process.


Sign in / Sign up

Export Citation Format

Share Document