Carbon and Energy Footprint Analysis of an Advanced Oxidation Process for Removing NDMA in Indirect Potable Water Reuse Operations

2011 ◽  
Vol 2011 (13) ◽  
pp. 3551-3558
Author(s):  
Reza Sobhani ◽  
Diego Rosso
2019 ◽  
Vol 53 (22) ◽  
pp. 13323-13331 ◽  
Author(s):  
Kiranmayi P. Mangalgiri ◽  
Samuel Patton ◽  
Liang Wu ◽  
Shanhui Xu ◽  
Kenneth P. Ishida ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 391-404

The study introduced footprint analysis as a new methodology and focused on differentiating wastewater streams with the highest color content and optimizing the advanced oxidation process for the segregated streams for effective color removal from denim processing. Experiments were implemented to four segregated streams rather than the entire plant effluent. A flow proportional composite mixture of segregated streams was used for color removal experiments using the advanced oxidation process with ozone and hydrogen peroxide and Fenton oxidation as other alternatives. The latter yielded the best results achieving total removal of color below visual detection limit after an optimum reaction time of 10 minutes. The Fenton oxidation process was also applied to a representative sample from the plant effluent after the physical-chemical treatment sequence, where color absorbance levels were lowered at all wavelengths below 1.0 m-1. The merit of the new footprint approach was confirmed by the results, which provided a conclusive indication that color treatment at source, implemented on selected segregated wastewater streams, presented concrete advantages over the end of pipe treatment of the overall effluent.


2019 ◽  
Vol 5 (11) ◽  
pp. 1985-1992 ◽  
Author(s):  
Nor Elhouda Chadi ◽  
Slimane Merouani ◽  
Oualid Hamdaoui ◽  
Mohammed Bouhelassa ◽  
Muthupandian Ashokkumar

We have recently reported that the reaction of H2O2/IO4− could be a new advanced oxidation process for water treatment [N. E. Chadi, S. Merouani, O. Hamdaoui, M. Bouhelassa and M. Ashokkumar, Environ. Sci.: Water Res. Technol., 2019, 5, 1113–1123].


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1686 ◽  
Author(s):  
Carolin Heim ◽  
Mohamad Rajab ◽  
Giorgia Greco ◽  
Sylvia Grosse ◽  
Jörg E. Drewes ◽  
...  

The focus of this study was to investigate the efficacy of applying boron-doped diamond (BDD) electrodes in an electrochemical advanced oxidation process, for the removal of the target compound diclofenac (DCF) in different water matrices. The reduction of DCF, and at the same time the formation of transformation products (TPs) and inorganic by-products, was investigated as a function of electrode settings and the duration of treatment. Kinetic assessments of DCF and possible TPs derived from data from the literature were performed, based on a serial chromatographic separation with reversed-phase liquid chromatographyfollowed by hydophilic interaction liquid chromatography (RPLC-HILIC system) coupled to ESI-TOF mass spectrometry. The application of the BDD electrode resulted in the complete removal of DCF in deionized water, drinking water and wastewater effluents spiked with DCF. As a function of the applied current density, a variety of TPs appeared, including early stage products, structures after ring opening and highly oxidized small molecules. Both the complexity of the water matrix and the electrode settings had a noticeable influence on the treatment process’s efficacy. In order to achieve effective removal of the target compound under economic conditions, and at the same time minimize by-product formation, it is recommended to operate the electrode at a moderate current density and reduce the extent of the treatment.


Sign in / Sign up

Export Citation Format

Share Document