scholarly journals Multiobjective Dynamic Optimization for Optimal Load-Following of Natural Gas Combined Cycle Power Plants under Stress Constraints

Author(s):  
Yifan Wang ◽  
Debangsu Bhattacharyya ◽  
Richard Turton
2013 ◽  
Author(s):  
Norma J. Kuehn ◽  
Kajal Mukherjee ◽  
Paul Phiambolis ◽  
Lora L. Pinkerton ◽  
Elsy Varghese ◽  
...  

Author(s):  
Juan Pablo Gutierrez ◽  
Terry B. Sullivan ◽  
Gerald J. Feller

The increase in price of natural gas and the need for a cleaner technology to generate electricity has motivated the power industry to move towards Integrated Gasification Combined Cycle (IGCC) plants. The system uses a low heating value fuel such as coal or biomass that is gasified to produce a mixture of hydrogen and carbon monoxide. The potential for efficiency improvement and the decrease in emissions resulting from this process compared to coal-fired power plants are strong evidence to the argument that IGCC technology will be a key player in the future of power generation. In addition to new IGCC plants, and as a result of new emissions regulations, industry is looking at possibilities for retrofitting existing natural gas plants. This paper studies the feasibility of retrofitting existing gas turbines of Natural Gas Combined Cycle (NGCC) power plants to burn syngas, with a focus on the water/steam cycle design limitations and necessary changes. It shows how the gasification island processes can be treated independently and then integrated with the power block to make retrofitting possible. This paper provides a starting point to incorporate the gasification technology to current natural gas plants with minor redesigns.


2019 ◽  
Vol 12 (7) ◽  
pp. 2161-2173 ◽  
Author(s):  
Rebecca L. Siegelman ◽  
Phillip J. Milner ◽  
Eugene J. Kim ◽  
Simon C. Weston ◽  
Jeffrey R. Long

As natural gas supplies a growing share of global primary energy, new research efforts are needed to develop adsorbents for carbon capture from gas-fired power plants alongside efforts targeting emissions from coal-fired plants.


Author(s):  
Günnur Şen ◽  
Mustafa Nil ◽  
Hayati Mamur ◽  
Halit Doğan ◽  
Mustafa Karamolla ◽  
...  

Natural gas combined cycle power plants (CCPPs) are widely used to meet peak loads in electric energy production. Continuous monitoring of the output electrical power of CCPPs is a requirement for power performance. In this study, the role of ambient temperature change having the greatest effect on electric production is investigated for a natural gas CCPP. The plant has generated electricity for fourteen years and setup at 240 MW in Aliağa, İzmir, Turkey. Depending on the seasonal temperature changes, the study data were obtained from each gas turbine (GT), steam turbine (ST) and combined cycle blocks (CCBs) in the ambient temperature range of 8-23°C. It has been found that decreases of the electric energy in the GTs because of the temperature increase and indirectly diminishes of the electricity production in the STs. As a result, the efficiency of each GT, ST and CCB reduced, although the quantity of fuel consumed by the controllers in the plant was decreased. As a result of this data, it has been recommended and applied that additional precautions have been taken for the power plant to bring the air entering the combustion chamber to ideal conditions and necessary air cooling systems have been installed.


Sign in / Sign up

Export Citation Format

Share Document