bulk scale
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 36)

H-INDEX

19
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1389
Author(s):  
Sup Hong ◽  
Hyung-Woo Kim ◽  
Tae-Kyung Yeu ◽  
Rei Arai ◽  
Tetsuo Yamazaki

Ferromanganese nodules have been recognized as a potential future metal source for over 50 years. Many research and development efforts have been conducted by many organizations. Most of the efforts have been concentrated into the mining technologies especially for hydraulic lifting through riser pipes with bulk-scale nodule collector. However, no commercial mining venture exists. Uncertainty in the economy of nodule mining is considered to be the reason for this. In order to improve the economy, a mining subsystem based on mechanical lifting and small-scale collectors is proposed and the preliminary economic feasibility is examined in this study. The benefit was at a favorable level compared with that using hydraulic lifting with bulk-scale collector. From the viewpoint of environmental impact assessment, environmental considerations of deep-sea sediment plume are explained.


Author(s):  
Prasad Panchabhai ◽  
Neelakandan Kaliaperumal ◽  
Gopalakrishnan Mannathusamy ◽  
Anbuselvan Chinnadurai

The article confers a scalable manufacturing process of Fenspiride HCl. 4-aminomethyl-1-(2-phenylethyl)-piperidin-4-ol is the main building block in Fenspiride HCl synthesis. The reported reagents for 4-aminomethyl-1-(2-phenylethyl)-piperidin-4-ol synthesis are costly, explosive, highly toxic, produce hazardous waste, and also need to be handled with most care. The paper introduces aqueous ammonia as an alternate reagent in Fenspiride HCl and used in 4-aminomethyl-1-(2-phenylethyl)-piperidin-4-ol synthesis. The new green chemistry aspect makes the process environment-friendly and cheaper. It also eliminates toxic, sensitive, and hazardous reagents and makes the process safe on uncomplicated on bulk scale production. The high pure Fenspiride HCl is obtained by following this process and meets the ICH limits with good yield.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Muhammad Sadiq Hussain ◽  
Rabia Rehman ◽  
Muhammad Imran

Trapa natans peels (TNPs) and Citrullus lanatus peels (CLPs) were utilized for the biosorptive removal of brilliant green dye (BGD), after modifying with citric acid. Characterization and surface morphology were studied by Fourier transform infrared spectroscopy and scanning electron microscopy. For the removal of BGD by citric acid-treated Trapa natans peels (CA-TNPs), the optimum conditions were obtained with adsorbent dose 0.8 g, contact time 25 minutes, initial pH 5, temperature 30°C, and agitation speed 100 rpm, while for the citric acid-treated Citrullus lanatus peels (CA-CLPs), adsorbent dose 0.8 g, contact time 20 minutes, pH 5, temperature 30°C, and agitation speed 100 rpm gave optimum results. The qmax values obtained were 108.6, 128, 144.9, and 188.68 mg/g for R-TNP, CA-TNP, R-CLP, and CA-CLP, respectively, while the correlation coefficient (R2) values obtained were 0.985, 0.986, 0.985, and 0.998 for R-TNP, CA-TNP, R-CLP, and CA-CLP, respectively. These favor the Langmuir isotherm and pseudo-second-order kinetics, with negative (ΔG0) values of all adsorbents, determining that the adsorption phenomenon is exothermic and spontaneous in nature. Both citric acid-treated peels of Trapa natans and Citrullus lanatus were found suitable for bulk-scale eradication of hazardous, toxic, and carcinogenic basic cationic dyes.


2021 ◽  
Author(s):  
Jacob Garcia ◽  
Scott Sayres

Understanding the role of defect sites on the mechanism and lifetime of photoexcited state relaxation is critical for the ration-al design of advanced materials. Here, the ultrafast electronic relaxation dynamics of neutral nickel oxide clusters were inves-tigated with femtosecond pump-probe spectroscopy and supported with theoretical calculations to reveal that their excited state lifetimes are strongly dependent on the nature of the electronic transition. Absorption of a UV photon produces short lived (lifetime ~110 fs) dynamics in stoichiometric (NiO)n clusters (n < 6) that are attributed to a ligand to metal charge transfer (LMCT) and produces metallic-like electron-electron scattering. Oxygen vacancies introduce excitations with Ni-3d→Ni-4s and 3d→4p character, which increases the lifetimes of the sub-picosecond response by up to 80% and enables the formation of long-lived (lifetimes > 2.5 ps) states. The atomic precision and tunability of gas phase clusters are employed to highlight a unique reliance on the Ni orbital contributions to the photoexcited lifetimes, providing new insights to the anal-ogous band edge excitation dynamics of strongly correlated bulk-scale NiO materials.


Carbon ◽  
2021 ◽  
Author(s):  
Zizhao Xu ◽  
Shingo Nakamura ◽  
Taiki Inoue ◽  
Yuta Nishina ◽  
Yoshihiro Kobayashi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. C. Angastiniotis ◽  
S. Christopoulos ◽  
K. C. Petallidou ◽  
A. M. Efstathiou ◽  
A. Othonos ◽  
...  

AbstractA bulk scale process is implemented for the production of nanostructured film composites comprising unary or multi-component metal oxide nanoparticles dispersed in a suitable polymer matrix. The as-received nanoparticles, namely Al$$_2$$ 2 O$$_3$$ 3 , SiO$$_2$$ 2 and TiO$$_2$$ 2 and binary combinations, are treated following specific chemical and mechanical processes in order to be suspended at the optimal size and composition. Subsequently, a polymer extrusion technique is employed for the fabrication of each film, while the molten polymer is mixed with the treated metal oxide nanoparticles. Transmission and reflection measurements are performed in order to map the optical properties of the fabricated, nanostructured films in the UV, VIS and IR. The results substantiate the capability of the overall methodology to regulate the optical properties of the films depending on the type of nanoparticle formation which can be adjusted both in size and composition.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 462
Author(s):  
Archana R. Deokar ◽  
Ilana Perelshtein ◽  
Melissa Saibene ◽  
Nina Perkas ◽  
Paride Mantecca ◽  
...  

Simultaneous water and ethanol-based synthesis and coating of copper and zinc oxide (CuO/ZnO) nanoparticles (NPs) on bandages was carried out by ultrasound irradiation. High resolution-transmission electron microscopy demonstrated the effects of the solvent on the particle size and shape of metal oxide NPs. An antibacterial activity study of metal-oxide-coated bandages was carried out against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). CuO NP-coated bandages made from both water and ethanol demonstrated complete killing of S. aureus and E. coli bacteria within 30 min., whereas ZnO NP-coated bandages demonstrated five-log reductions in viability for both kinds of bacteria after 60 min of interaction. Further, the antibacterial mechanism of CuO/ZnO NP-coated bandages is proposed here based on electron spin resonance studies. Nanotoxicology investigations were conducted via in vivo examinations of the effect of the metal-oxide bandages on frog embryos (teratogenesis assay—Xenopus). The results show that water-based coatings resulted in lesser impacts on embryo development than the ethanol-based ones. These bandages should therefore be considered safer than the ethanol-based ones. The comparison between the toxicity of the metal oxide NPs prepared in water and ethanol is of great importance, because water will replace ethanol for bulk scale synthesis of metal oxide NPs in commercial companies to avoid further ignition problems. The novelty and importance of this manuscript is avoiding the ethanol in the typical water:ethanol mixture as the solvent for the preparation of metal oxide NPs. Ethanol is ignitable, and commercial companies are trying the evade its use. This is especially important these days, as the face mask produced by sonochemistry (SONOMASK) is being sold all over the world by SONOVIA, and it is coated with ZnO.


Sign in / Sign up

Export Citation Format

Share Document