Turning NGCC Into IGCC: Cycle Retrofitting Issues

Author(s):  
Juan Pablo Gutierrez ◽  
Terry B. Sullivan ◽  
Gerald J. Feller

The increase in price of natural gas and the need for a cleaner technology to generate electricity has motivated the power industry to move towards Integrated Gasification Combined Cycle (IGCC) plants. The system uses a low heating value fuel such as coal or biomass that is gasified to produce a mixture of hydrogen and carbon monoxide. The potential for efficiency improvement and the decrease in emissions resulting from this process compared to coal-fired power plants are strong evidence to the argument that IGCC technology will be a key player in the future of power generation. In addition to new IGCC plants, and as a result of new emissions regulations, industry is looking at possibilities for retrofitting existing natural gas plants. This paper studies the feasibility of retrofitting existing gas turbines of Natural Gas Combined Cycle (NGCC) power plants to burn syngas, with a focus on the water/steam cycle design limitations and necessary changes. It shows how the gasification island processes can be treated independently and then integrated with the power block to make retrofitting possible. This paper provides a starting point to incorporate the gasification technology to current natural gas plants with minor redesigns.

2013 ◽  
Author(s):  
Norma J. Kuehn ◽  
Kajal Mukherjee ◽  
Paul Phiambolis ◽  
Lora L. Pinkerton ◽  
Elsy Varghese ◽  
...  

2019 ◽  
Vol 12 (7) ◽  
pp. 2161-2173 ◽  
Author(s):  
Rebecca L. Siegelman ◽  
Phillip J. Milner ◽  
Eugene J. Kim ◽  
Simon C. Weston ◽  
Jeffrey R. Long

As natural gas supplies a growing share of global primary energy, new research efforts are needed to develop adsorbents for carbon capture from gas-fired power plants alongside efforts targeting emissions from coal-fired plants.


Author(s):  
S. A. Lawson ◽  
D. L. Straub ◽  
S. Beer ◽  
K. H. Casleton ◽  
T. Sidwell

The energy requirements associated with recovering greenhouse gases from Integrated Gasification Combined Cycle (IGCC) or Natural Gas Combined Cycle (NGCC) power plants are significant. The subsequent reductions in overall plant efficiency also result in a higher cost of electricity. In order to meet the future demand for cleaner energy production, this research is focused on improving gas turbine efficiency through advancements in gas turbine cooling capabilities. For this study, an experimental approach was developed to quantify overall effectiveness and net heat flux reduction for a film-cooled test article at high temperature and pressure conditions. A major part of this study focused on validating an advanced optical thermography technique capable of distinguishing between emitted and reflected radiation from film-cooled test articles exposed to exhaust gases in excess of 1000°C and 5 bar. The optical thermography method was used to acquire temperature maps of both external and internal wall temperatures on a test article with fan-shaped film cooling holes. The overall effectiveness and heat flux were quantified with one experiment. The optical temperature measurement technique was capable of measuring wall temperatures to within ±7.2°C. Uncertainty estimates showed that the methods developed for this study were capable of quantifying improvements in overall effectiveness necessary to meet DOE program goals. Results showed that overall effectiveness increased with an increase in blowing ratio and a decrease in mainstream gas pressure while heat flux contours indicated consistent trends.


Author(s):  
Günnur Şen ◽  
Mustafa Nil ◽  
Hayati Mamur ◽  
Halit Doğan ◽  
Mustafa Karamolla ◽  
...  

Natural gas combined cycle power plants (CCPPs) are widely used to meet peak loads in electric energy production. Continuous monitoring of the output electrical power of CCPPs is a requirement for power performance. In this study, the role of ambient temperature change having the greatest effect on electric production is investigated for a natural gas CCPP. The plant has generated electricity for fourteen years and setup at 240 MW in Aliağa, İzmir, Turkey. Depending on the seasonal temperature changes, the study data were obtained from each gas turbine (GT), steam turbine (ST) and combined cycle blocks (CCBs) in the ambient temperature range of 8-23°C. It has been found that decreases of the electric energy in the GTs because of the temperature increase and indirectly diminishes of the electricity production in the STs. As a result, the efficiency of each GT, ST and CCB reduced, although the quantity of fuel consumed by the controllers in the plant was decreased. As a result of this data, it has been recommended and applied that additional precautions have been taken for the power plant to bring the air entering the combustion chamber to ideal conditions and necessary air cooling systems have been installed.


Author(s):  
J. S. Rao ◽  
J. Neelima ◽  
G. Srikanth

Bulk of CO2 emission comes from thermal power generation, which constitutes about 63% of total installed capacity of around 101.6 GWe. The policy makers and power utilities are increasingly favoring the introduction of clean coal technologies, which release less pollutants viz. CO2, NOx and SOx than the conventional thermal plants and have potential to operate at higher efficiencies above 42–44%. Among the clean coal technologies, Integrated Gasification Combined Cycle (IGCC) is being considered the most promising because of higher thermal efficiencies and improved environmental performance. IGCC has the added advantage of removing sulphur pollutants in bed using sorbent as against expensive external post combustion flue gas desulphurisation systems. It is proposed to set up 100MWe-demonstration plant for proving the emission standards and performance prior to commercialization. This plant is based on Frame 6 FA gas turbine designed for low Btu gas firing. The Paper presents the technical parameters and compares the overall project cost of 100MWe IGCC plant for both Cold gas cleanup unit (CGCU) and Hot gas cleanup unit (HGCU), which comprises of Gasification Island, power block, and balance of plant. Being first of kind the project cost is higher and the project cost is likely to get reduced for utility scale of 425 MW IGCC plants in future.


Sign in / Sign up

Export Citation Format

Share Document