Conjugation of the Mycotoxins Alternariol and Alternariol Monomethyl Ether in Tobacco Suspension Cells

2015 ◽  
Vol 63 (19) ◽  
pp. 4728-4736 ◽  
Author(s):  
Andreas A. Hildebrand ◽  
Beate N. Kohn ◽  
Erika Pfeiffer ◽  
Daniel Wefers ◽  
Manfred Metzler ◽  
...  
2021 ◽  
Vol 7 (3) ◽  
pp. 172
Author(s):  
Francesco Aloi ◽  
Mario Riolo ◽  
Simona Marianna Sanzani ◽  
Annamaria Mincuzzi ◽  
Antonio Ippolito ◽  
...  

This study was aimed at identifying Alternaria species associated with heart rot disease of pomegranate fruit in southern Italy and characterizing their mycotoxigenic profile. A total of 42 Alternaria isolates were characterized. They were obtained from pomegranate fruits with symptoms of heart rot sampled in Apulia and Sicily and grouped into six distinct morphotypes based on macro- and microscopic features. According to multigene phylogenetic analysis, including internal transcribed spacer (ITS), translation elongation factor 1-α (EF-1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a SCAR marker (OPA10-2), 38 isolates of morphotypes 1 to 5 were identified as Alternaria alternata, while isolates of morphotype 6, all from Sicily, clustered within the Alternaria arborescens species complex. In particular, isolates of morphotype 1, the most numerous, clustered with the ex-type isolate of A. alternata, proving to belong to A. alternata. No difference in pathogenicity on pomegranate fruits was found between isolates of A. alternata and A. arborescens and among A. alternata isolates of different morphotypes. The toxigenic profile of isolates varied greatly: in vitro, all 42 isolates produced tenuazonic acid and most of them other mycotoxins, including alternariol, alternariol monomethyl ether, altenuene and tentoxin.


2021 ◽  
Vol 11 (9) ◽  
pp. 4239
Author(s):  
Nesrine H. Youssef ◽  
Sameer H. Qari ◽  
Said I. Behiry ◽  
Eldessoky S. Dessoky ◽  
Ehab I. El-Hallous ◽  
...  

Alternaria species, mainly air-borne fungi, affect potato plants, causing black spots symptoms. Morphological identification, pathogenicity assessment, and internal transcribed spacer (ITS) molecular identification confirmed that all isolates were Alternaria alternata. The annotated sequences were deposited in GenBank under accession numbers MN592771–MN592777. HPLC analysis revealed that the fungal isolates KH3 (133,200 ng/g) and NO3 (212,000 ng/g) produced higher levels of tenuazonic acid (TeA) and alternariol monomethyl ether (AME), respectively. Beet ethanol extract (BEE) and beet methanol extract (BME) at different concentrations were used as antimycotoxins. BME decreased the production of mycotoxins by 66.99–99.79%. The highest TeA reduction rate (99.39%) was reported in the KH3 isolate with 150 µg/mL BME treatment. In comparison, the most effective AME reduction rate (99.79%) was shown in the NO3 isolate with 150 µg/mL BME treatment. In the same way, BEE application resulted in 95.60–99.91% mycotoxin reduction. The highest TeA reduction rate (99.91%) was reported in the KH3 isolate with 150 µg/mL BEE treatment, while the greatest AME reduction rate (99.68%) was shown in the Alam1 isolate with 75 µg/mL BEE treatment. GC-MS analysis showed that the main constituent in BME was the antioxidant compound 1-dodecanamine, n,n-dimethyl with a peak area of 43.75%. In contrast, oxirane, methyl- (23.22%); hexadecanoic acid, methyl ester (10.72%); and n-hexadecanoic acid (7.32%) were the main components in BEE found by GC-MS. They are probably antimicrobial molecules and have an effect on the mycotoxin in general. To our knowledge, this is the first study describing the antimycotoxigenic activity of beet extracts against A. alternata mycotoxins-contaminated potato crops in Egypt, aimed to manage and save the environment.


2002 ◽  
Vol 48 (5) ◽  
pp. 753-757 ◽  
Author(s):  
Eiji Okuma ◽  
Kenji Soeda ◽  
Miho Fukuda ◽  
Mikiro Tada ◽  
Yoshiyuki Murata

2020 ◽  
Vol 36 (4) ◽  
pp. 361-369
Author(s):  
Adetoun O. Esan ◽  
Stephen O. Fapohunda ◽  
Chibundu N. Ezekiel ◽  
Michael Sulyok ◽  
Rudolf Krska

Abstract In this study, melon (n = 60) and sesame (n = 60) seeds purchased from markets within Benue and Nasarawa states, respectively, in Nigeria, during two seasons (dry and wet), were analysed for fungal and mycotoxin contamination in order to determine the safety of these foods for human consumption. Molecular analysis revealed the following seven fungal taxonomic groups in the foods: Aspergillus section Candidi, Aspergillus section Flavi, Aspergillus section Nigri, Cladosporium, Fusarium fujikuroi species group, Penicillium, and Pleosporales/Didymellaceae. A total of 78 microbial metabolites, including several mycotoxins, occurred in the foods. The most frequent mycotoxins in melon and sesame were aflatoxin B1 (occurrence: 76%) and alternariol monomethyl ether (occurrence: 59%), respectively. However, higher mean total aflatoxin levels occurred in sesame (17 μg kg−1) than in melon (11 μg kg−1). About 28 and 5% of melon and sesame, respectively, exceeded the 4 μg kg−1 total aflatoxin limit for oilseeds intended for direct human consumption in the European Union. Additionally, fumonisin B1 and moniliformin occurred only in sesame, whilst ochratoxins A and B occurred only in melon; ochratoxin B being reported for the first time in this food. Our data indicated seasonal variations in the fungal and mycotoxin contamination levels in both foods.


2009 ◽  
Vol 9 (1) ◽  
pp. 27 ◽  
Author(s):  
Mari Aidemark ◽  
Carl-Johan Andersson ◽  
Allan G Rasmusson ◽  
Susanne Widell

Toxins ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 166 ◽  
Author(s):  
Danlei Sun ◽  
Nannan Qiu ◽  
Shuang Zhou ◽  
Bing Lyu ◽  
Shuo Zhang ◽  
...  

With the climatic changes that have taken place during the last decade, the spectrum of fungal pathogens as well as mycotoxins has considerably changed. As a result, some emerging mycotoxins have been shown to occur frequently in agricultural products. In this study, a sensitive and reliable method for the determination of 10 emerging mycotoxins (beauvericin, enniatin A, enniatin A1, enniatin B, enniatin B1, alternariol, alternariol monomethyl ether, altenuene, tentoxin, and tenuazonic acid) in 12 different food matrices (cereals, legumes, potatoes, meats, eggs, aquatic foods, dairy products, vegetables, fruits, sugars, beverages, and alcohol beverages) was developed and validated. After a simple extraction, a one-step sample clean-up by a HLB solid phase extraction (SPE) column was sufficient for all 12 food matrices prior to analysis with ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Isotope internal standards 13C-TeA, TEN-d3, and 13C-AFB2 were used for accurate quantification. Validation in terms of linearity, selectivity, sensitivity, accuracy, and precision (intra and inter-day variability) were evaluated for the 10 mycotoxins in all selected matrices. The sensitivity varied from 0.0004 to 0.3 ng mL−1 (limits of detection) and from 0.002 to 0.9 ng mL−1 (limits of quantitation). The recoveries of 10 mycotoxins in fortified samples were from 60.6% to 164% including very low spiking levels in all 12 food matrices, with relative standard deviations (RSDs) less than 12%. The proposed methodology was applied to the analysis of 60 samples collected from five provinces within the 6th China Total Diet Study with the results discussed in detail. The advantages of sensitivity, accuracy, and robustness made it a powerful tool for emerging mycotoxin monitoring and dietary exposure assessment.


Toxins ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 452 ◽  
Author(s):  
Sharon Maphala Mokubedi ◽  
Judith Zanele Phoku ◽  
Rumbidzai Naledi Changwa ◽  
Sefater Gbashi ◽  
Patrick Berka Njobeh

A total of 105 different types of poultry feed samples from South Africa were simultaneously analysed for the presence of 16 mycotoxins using ultra-high-performance liquid chromatography coupled to a triple quadrupole mass spectrometer (UHPLC-MS/MS). The data revealed the presence of 16 mycotoxins in the various poultry feed samples. Fumonisin B1 (FB1) was the most dominant recovered from 100% of samples analysed at concentrations ranging between 38.7 and 7125.3 µg/kg. This was followed by zearalenone (ZEN) (range: 0.1–429 µg/kg) and deoxynivalenol (DON) (range: 2.5–154 µg/kg). Samples were also found to be contaminated with fumonisin B2 (FB2) (range: 0.7–125.1 µg/kg), fumonisin B3 (FB3) (range: 0.1–125.1 µg/kg), α-zearalenol (α-ZEL) (range: 0.6–20 µg/kg ), β-zearalenol (β-ZEL) (range: 0.2–22.1 µg/kg), 3-acetyldeoxynivalenol (3-ADON) (range: 0.1–12.9 µg/kg) and 15-acetyldeoxynivalenol (15-ADON) (range: 1.7–41.9 µg/kg). Alternaria mycotoxin, i.e., Alternariol monomethyl ether (AME) was recovered in 100% of samples at concentrations that ranged from 0.3–155.5 µg/kg. Aflatoxins (AFs) had an incidence rate of 92% with generally low concentration levels ranging from 0.1–3.7 µg/kg. Apart from these metabolites, 2 type A trichothecenes (THs), i.e., HT-2 toxin (HT-2) (range: 0.2–5.9 µg/kg) and T-2 toxin (T-2) (range: 0.1–15.3 µg/kg) were also detected. Mycotoxin contamination in South African poultry feed constitutes a concern as correspondingly high contamination levels, such as those observed herein are likely to affect birds, which can be accompanied by severe health implications, thus compromising animal productivity in the country. Such exposures, primarily to more than one mycotoxin concurrently, may elicit noticeable synergistic and or additive effects on poultry birds.


1980 ◽  
Vol 9 (3) ◽  
pp. 229-230 ◽  
Author(s):  
Takayuki Suga ◽  
Tadashi Aoki ◽  
Toshifumi Hirata ◽  
Ym Sook Lee ◽  
Osamu Nishimura ◽  
...  

2012 ◽  
Vol 28 (4) ◽  
pp. 261-266 ◽  
Author(s):  
Peter M. Scott ◽  
Wendy Zhao ◽  
Sherry Feng ◽  
Benjamin P.-Y. Lau

Sign in / Sign up

Export Citation Format

Share Document