Sodium Butyrate Ameliorates High-Fat-Diet-Induced Non-alcoholic Fatty Liver Disease through Peroxisome Proliferator-Activated Receptor α-Mediated Activation of β Oxidation and Suppression of Inflammation

2018 ◽  
Vol 66 (29) ◽  
pp. 7633-7642 ◽  
Author(s):  
Bo Sun ◽  
Yimin Jia ◽  
Jian Hong ◽  
Qinwei Sun ◽  
Shixing Gao ◽  
...  
2019 ◽  
Vol 47 (10) ◽  
pp. 5239-5255 ◽  
Author(s):  
Lu Huang ◽  
Wei Ding ◽  
Ming-Qiang Wang ◽  
Zheng-Gen Wang ◽  
Hong-Hui Chen ◽  
...  

Objective To investigate the cellular mechanisms of action of tanshinone IIA on the fatty liver disease induced by a high-fat diet in an animal model of non-alcoholic fatty liver disease (NAFLD). Methods Adult male Sprague Dawley rats were randomized into one of three groups: regular rat diet (CON group) for 4 months; high-fat diet (HFD group) for 4 months; HFD for 2 months followed by tanshinone IIA treatment plus HFD (TAN group) for a further 2 months. A range of physical and biochemical markers of lipid accumulation and fatty liver disease were measured and compared between the groups. Results Tanshinone IIA treatment significantly reduced fat accumulation in the liver and plasma lipid levels that had been increased by HFD. The toll-like receptor (TLR4)/nuclear factor kappa B (NF-κB) signalling pathway was silenced by tanshinone IIA treatment. Tumour necrosis factor-α and interleukin-6 were reduced by tanshinone IIA. Hepatocyte apoptosis was inhibited by tanshinone IIA. Tanshinone IIA upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ), which resulted in an improvement in the oxidative status. Conclusion Tanshinone IIA ameliorates NAFLD by targeting PPAR-γ and TLR4, resulting in decreased plasma lipids and oxidative stress, suggesting this strategy may form the basis of novel NAFLD therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuya Kawamura ◽  
Hiroaki Tanaka ◽  
Ryota Tachibana ◽  
Kento Yoshikawa ◽  
Shintaro Maki ◽  
...  

AbstractWe aimed to investigate the effects of maternal tadalafil therapy on fetal programming of metabolic function in a mouse model of fetal growth restriction (FGR). Pregnant C57BL6 mice were divided into the control, L-NG-nitroarginine methyl ester (L-NAME), and tadalafil + L-NAME groups. Six weeks after birth, the male pups in each group were given a high-fat diet. A glucose tolerance test (GTT) was performed at 15 weeks and the pups were euthanized at 20 weeks. We then assessed the histological changes in the liver and adipose tissue, and the adipocytokine production. We found that the non-alcoholic fatty liver disease activity score was higher in the L-NAME group than in the control group (p < 0.05). Although the M1 macrophage numbers were significantly higher in the L-NAME/high-fat diet group (p < 0.001), maternal tadalafil administration prevented this change. Moreover, the epididymal adipocyte size was significantly larger in the L-NAME group than in the control group. This was also improved by maternal tadalafil administration (p < 0.05). Further, we found that resistin levels were significantly lower in the L-NAME group compared to the control group (p < 0.05). The combination of exposure to maternal L-NAME and a high-fat diet induced glucose impairment and non-alcoholic fatty liver disease. However, maternal tadalafil administration prevented these complications. Thus, deleterious fetal programming caused by FGR might be modified by in utero intervention with tadalafil.


2014 ◽  
Vol 10 (6) ◽  
pp. 2917-2923 ◽  
Author(s):  
XIANG WANG ◽  
QIAOHUA REN ◽  
TAO WU ◽  
YONG GUO ◽  
YONG LIANG ◽  
...  

Author(s):  
Ana Lemus-Conejo ◽  
Elena Grao-Cruces ◽  
Rocio Toscano ◽  
Lourdes M Varela ◽  
Carmen Claro ◽  
...  

Bioactive peptides are related to the prevention and treatment of many diseases. GPETAFLR is an octapeptide which was isolated from lupine (Lupinus angustifolius L.) and showed anti-inflammatory properties. The aim of this study was to evaluate the potential activity of GPETAFLR to prevent non-alcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed a standard diet or an HFD. Two of the groups fed the HFD diet were treated with GPETAFLR in their drinking water at 0,5 mg/kg/d or 1 mg/kg/d. To determine the ability of GPETAFLR to improve the onset and progression of NAFLD, histological studies, hepatic enzyme profile, inflammatory cytokine and lipid metabolism-related genes and proteins were analyzed. Our results suggest that HFD-induced inflammatory metabolic disorders were alleviated by treatment with GPETAFLR. In conclusion, dietary lupine consumption could repair HFD-induced hepatic damage, possibly via modifications in the liver&rsquo;s lipid signalling pathways.


2020 ◽  
Vol 11 (4) ◽  
pp. 2943-2952 ◽  
Author(s):  
Ana Lemus-Conejo ◽  
Elena Grao-Cruces ◽  
Rocio Toscano ◽  
Lourdes M. Varela ◽  
Carmen Claro ◽  
...  

A lupine (Lupinus angustifolious L.) peptide prevents non-alcoholic fatty liver disease in high-fat-diet-induced obese mice.


2019 ◽  
Vol 10 (2) ◽  
pp. 814-823 ◽  
Author(s):  
Ke Chen ◽  
Xu Chen ◽  
Hongliang Xue ◽  
Peiwen Zhang ◽  
Wanjun Fang ◽  
...  

Coenzyme Q10 regulates lipid metabolism to ameliorate the progression of NAFLD by activating the AMPK pathway.


Sign in / Sign up

Export Citation Format

Share Document