Transferable Ring Corrections for Predicting Enthalpy of Formation of Cyclic Compounds

Author(s):  
Qiyuan Zhao ◽  
Nicolae C. Iovanac ◽  
Brett M. Savoie
1998 ◽  
Vol 95 (10) ◽  
pp. 2267-2279 ◽  
Author(s):  
R. Ouédraogo ◽  
T. S. Kabré ◽  
M. Gambino ◽  
J. P. Bros

2020 ◽  
Vol 5 (443) ◽  
pp. 85-91
Author(s):  
Ibrayev M.K., ◽  
◽  
Takibayeva A.T., ◽  
Fazylov S.D., ◽  
Rakhimberlinova Zh.B., ◽  
...  

This article presents studies on the targeted search for new derivatives of azoles, such as benzthiazole, 3,5-dimethylpyrazole, 1,3,4-oxadiazole-2-thione, 1,3,4-thiadiazole. The possibility of combining in one molecule of the azole ring with other cyclic compounds: the alkaloid cytisine, morpholine, furan and some arenes has been studied. To obtain new compounds, the reactions of bromination, acylation, and interaction with isothiocyanates were studied. Optimal synthesis conditions were studied for all reactions. It was found that the reaction of 4-bromo-3,5-dimethylpyrazole with isothiocyanates, in contrast to the previously written derivatives of anilines, takes a longer time and requires heating the reaction mixture. The combination of a pirasol fragment with halide substituents often results in an enhanced therapeutic effect. The synthesized 2-bromine-N-(6-rodanbenzo[d]thiazole-2-yl)acetamide, due to the alkylbromide group, is an important synth in the synthesis of new benzthiazole derivatives. Its derivatives combine in one molecule the rest of rhodanbenzthiazole with alkaloid cytisine and biogenic amine morpholine and are potentially biologically active compounds, since the molecule structure contains several pharmacophoric fragments: benzthiazole and alkaloid (amine) heterocycles, rhodane and urea groups. The mechanism of formation of 1,3,4-oxadiazole-2-tyons from hydrazides under action on them by carbon disulfide was studied and assumed. It was shown that dithiocarbamates in acidic medium decompose with the release of hydrogen sulfide and the formation of highly reactive isothiocyanate group. Then, intra-molecular cyclization occurs, with the formation of end products - 1,3,4-oxadiazole-2-thions. The structures of the synthesized compounds were studied by 1H and 13C NMR spectroscopy. All synthesized substances are potentially biologically active compounds, since they contain several pharmacophore fragments in their structure.


Synthesis ◽  
2020 ◽  
Author(s):  
Oleksandr O. Grygorenko ◽  
Rustam Gurbanov ◽  
Andriy Sokolov ◽  
Sergey Golovach ◽  
Kostiantyn Melnykov ◽  
...  

AbstractA three-step approach to the synthesis of sp3-enriched β-fluoro sulfonyl chlorides starting from alkenes is reported. The method was successfully applied to a wide range of acyclic and cyclic substrates, bearing either an exocyclic or an endocyclic double bond. The procedure worked with a wide range of substrates and tolerated a number of functional and protecting groups. Moreover, the target cyclic compounds were obtained as single cis diastereomers on a multigram scale. The title compounds are promising building blocks for drug discovery that can be used to obtain sp3-enriched β-fluoro and α,β-unsaturated sulfonamides.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 197
Author(s):  
Iván Ramos-Tomillero ◽  
Marisa K. Sánchez ◽  
Hortensia Rodríguez ◽  
Fernando Albericio

Using the classical Ugi four-component reaction to fuse an amine, ketone, carboxylic acid, and isocyanide, here we prepared a short library of N-alkylated α,α-dialkylglycine derivatives. Due to the polyfunctionality of the dipeptidic scaffold, this highly steric hindered system shows an interesting acidolytic cleavage of the C-terminal amide. In this regard, we studied the structure-acid lability relationship of the C-terminal amide bond (cyclohexylamide) of N-alkylated α,α-dialkylglycine amides 1a–n in acidic media and, afterward, it was established that the most important structural features related to its cleavage. Then, it was demonstrated that electron-donating effects in the aromatic amines, flexible acyl chains (Gly) at the N-terminal and the introduction of cyclic compounds into dipeptide scaffolds, increased the rate of acidolysis. All these effects are related to the ease with which the oxazolonium ion intermediate forms and they promote the proximity of the central carbonyl group to the C-terminal amide, resulting in C-terminal amide cleavage. Consequently, these findings could be applied for the design of new protecting groups, handles for solid-phase synthesis, and linkers for conjugation, due to its easily modulable and the fact that it allows to fine tune its acid-lability.


Sign in / Sign up

Export Citation Format

Share Document