SOME DIRECTIONS IN THE MODIFICATION OF AZOLES

2020 ◽  
Vol 5 (443) ◽  
pp. 85-91
Author(s):  
Ibrayev M.K., ◽  
◽  
Takibayeva A.T., ◽  
Fazylov S.D., ◽  
Rakhimberlinova Zh.B., ◽  
...  

This article presents studies on the targeted search for new derivatives of azoles, such as benzthiazole, 3,5-dimethylpyrazole, 1,3,4-oxadiazole-2-thione, 1,3,4-thiadiazole. The possibility of combining in one molecule of the azole ring with other cyclic compounds: the alkaloid cytisine, morpholine, furan and some arenes has been studied. To obtain new compounds, the reactions of bromination, acylation, and interaction with isothiocyanates were studied. Optimal synthesis conditions were studied for all reactions. It was found that the reaction of 4-bromo-3,5-dimethylpyrazole with isothiocyanates, in contrast to the previously written derivatives of anilines, takes a longer time and requires heating the reaction mixture. The combination of a pirasol fragment with halide substituents often results in an enhanced therapeutic effect. The synthesized 2-bromine-N-(6-rodanbenzo[d]thiazole-2-yl)acetamide, due to the alkylbromide group, is an important synth in the synthesis of new benzthiazole derivatives. Its derivatives combine in one molecule the rest of rhodanbenzthiazole with alkaloid cytisine and biogenic amine morpholine and are potentially biologically active compounds, since the molecule structure contains several pharmacophoric fragments: benzthiazole and alkaloid (amine) heterocycles, rhodane and urea groups. The mechanism of formation of 1,3,4-oxadiazole-2-tyons from hydrazides under action on them by carbon disulfide was studied and assumed. It was shown that dithiocarbamates in acidic medium decompose with the release of hydrogen sulfide and the formation of highly reactive isothiocyanate group. Then, intra-molecular cyclization occurs, with the formation of end products - 1,3,4-oxadiazole-2-thions. The structures of the synthesized compounds were studied by 1H and 13C NMR spectroscopy. All synthesized substances are potentially biologically active compounds, since they contain several pharmacophore fragments in their structure.

Author(s):  
O.A. Bihdan ◽  
V.V. Parchenko

Current trends in the search for new biologically active compounds among synthetic molecules have arguably proved a priority in studies of the heterocyclic 1,2,4-triazole system. For many years, 1,2,4-triazole derivatives remain the object of close attention of scientists of various scientific fields. The unique properties of 1,2,4-triazole derivatives include high reactivity, which allows different modification of this system, practical absence of toxicity of these derivatives and the presence of a wide range of biological, pharmacological properties, which in the complex provides the prerequisites for the creation of new biologically active compounds, and in the future, active pharmaceutical ingredients (AFI). The aim of our work is to investigate some transformations in a number of derivatives of 5-(thiophen-3-ylmethyl) -4-R1-1,2,4-triazole-3-thiol, to study the physicochemical properties of the new synthesized compounds. A well-known fact remains the successful attempt of many scientists involved in the study of the heterocyclic 1,2,4-triazole system to synthesize potential biologically active compounds. The process of creating new molecules is very painstaking and requires considerable effort. The chemical approaches for the synthesis of the starting compounds required for further transformations are well known and described. Therefore, we used the corresponding N-R1-2 as intermediates for the synthesis of new 5-(thiophen-3-ylmethyl) -4-R1-1,2,4-triazole-3-thiols appropriate ones were used N-R1-2-(2-(thiophen-3-yl) acetyl) hydrazinocarbothioamide.


2019 ◽  
Vol 15 ◽  
pp. 2782-2789 ◽  
Author(s):  
Tian Cheng ◽  
Clara Chepkirui ◽  
Cony Decock ◽  
Josphat C Matasyoh ◽  
Marc Stadler

During the course of screening for new metabolites from basidiomycetes, we isolated and characterized five previously undescribed secondary metabolites, skeletocutins M–Q (1–5), along with the known metabolite tyromycin A (6) from the fruiting bodies of the polypore Skeletocutis sp. The new compounds did not exhibit any antimicrobial, cytotoxic, or nematicidal activities. However, compound 3 moderately inhibited the biofilm formation of Staphylococcus aureus (S. aureus), while compounds 3 and 4 performed moderately in the ʟ-leucine-7-amido-4-methylcoumarin (ʟ-Leu-AMC) inhibition assay. These compounds represent the first secondary metabolites reported to occur in the fruiting bodies by Skeletocutis. Interestingly, tyromycin A (6) was found to be the only common metabolite in fruiting bodies and mycelial cultures of the fungus, and none of the recently reported skeletocutins from the culture of the same strain were detected in the basidiomes.


2015 ◽  
Vol 39 (6) ◽  
pp. 4308-4315 ◽  
Author(s):  
Agnieszka Adamczyk-Woźniak ◽  
Karolina Czerwińska ◽  
Izabela D. Madura ◽  
Alicja Matuszewska ◽  
Andrzej Sporzyński ◽  
...  

The combination of a piperazine and boronic groups within one molecule can result in a totally novel biological activity.


2020 ◽  
Vol 3 (1) ◽  
pp. 97
Author(s):  
Anna Kmieciak ◽  
Marta Ćwiklińska ◽  
Karolina Jeżak ◽  
Afef Shili ◽  
Marek P. Krzemiński

Many isoquinoline alkaloids are biologically active compounds and successfully used as pharmaceuticals. Compounds belonging to the isoquinolines and tetrahydroisoquinolines (TIQs) can be used as anesthetics, antihypertensive drugs, antiviral agents, and vasodilators. In the presented studies, the search for new compounds and synthesis of tetrahydroisoquinoline alkaloid derivatives was undertaken. Several dihydroisoquinolines were synthesized by Bishler–Napieralski reaction from the corresponding amides. Dihydroisoquinolines were reduced with sodium borohydride to obtain racemic tetrahydroisoquinolines. Asymmetric reduction of selected 3,4-dihydroisoquinolines was attempted with borane in the presence of chiral terpene spiroboranes.


Author(s):  
Фролова Ю. С. ◽  
Каплаушенко А. Г.

The design of new drugs is a rather complex and multi-stage process. The modeling and creation of new biologically active compounds are one of the stages of this operation. One of the important stages of preclinical trials is the study of acute toxicity of newly synthesized compounds. Great interest in this branch is nitrogen-containing heterocycles, namely 1,2,4-triazole and their derivatives.Therefore, the purpose of our work is to study acute toxicity among new derivatives of 5-(1H-tetrazole-1-yl)-4-R-3-thio(amino)-1,2,4-triazole. The study of acute toxicity was carried out by the method of V. B. Prozorovsky on the white nonlinear rats.As a result of the experiments, acute toxicity of the 41 synthesized compounds was determined. The value of the LD50 of new derivatives of 5-(1H-tetrazole-1-yl)-4-R-3-thio(amino)-1,2,4-triazole is in the range of 357-1060 mg/kg, and according to the classification of Sidorov I. K. belong to IV and V toxicity classes.


Sign in / Sign up

Export Citation Format

Share Document