Resolving Entangled Reactivity Modes through External Electric Fields and Substitution: Application to E2/SN2 Reactions

Author(s):  
Thijs Stuyver ◽  
Sason Shaik
Author(s):  
Johan Sjöblom ◽  
Sameer Mhatre ◽  
Sébastien Simon ◽  
Roar Skartlien ◽  
Geir Sørland

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zainab Gholami ◽  
Farhad Khoeini

AbstractThe main contribution of this paper is to study the spin caloritronic effects in defected graphene/silicene nanoribbon (GSNR) junctions. Each step-like GSNR is subjected to the ferromagnetic exchange and local external electric fields, and their responses are determined using the nonequilibrium Green’s function (NEGF) approach. To further study the thermoelectric (TE) properties of the GSNRs, three defect arrangements of divacancies (DVs) are also considered for a larger system, and their responses are re-evaluated. The results demonstrate that the defected GSNRs with the DVs can provide an almost perfect thermal spin filtering effect (SFE), and spin switching. A negative differential thermoelectric resistance (NDTR) effect and high spin polarization efficiency (SPE) larger than 99.99% are obtained. The system with the DV defects can show a large spin-dependent Seebeck coefficient, equal to Ss ⁓ 1.2 mV/K, which is relatively large and acceptable. Appropriate thermal and electronic properties of the GSNRs can also be obtained by tuning up the DV orientation in the device region. Accordingly, the step-like GSNRs can be employed to produce high efficiency spin caloritronic devices with various features in practical applications.


Author(s):  
Li Zhang ◽  
Ya‐Ling Ye ◽  
Xiao‐Ling Zhang ◽  
Xiang‐Hui Li ◽  
Qiao‐Hong Chen ◽  
...  

Soft Matter ◽  
2014 ◽  
Vol 10 (45) ◽  
pp. 9110-9119 ◽  
Author(s):  
Hanumantha Rao Vutukuri ◽  
Frank Smallenburg ◽  
Stéphane Badaire ◽  
Arnout Imhof ◽  
Marjolein Dijkstra ◽  
...  

2007 ◽  
Vol 22 (8) ◽  
pp. 2087-2095 ◽  
Author(s):  
Julia Slutsker ◽  
Zhuopeng Tan ◽  
Alexander L. Roytburd ◽  
Igor Levin

A thermodynamic approach was used to describe the formation and magnetoelectric response of composite multiferroic films. Experimental and theoretical results that address the origins of different phase morphologies in epitaxial spinel-perovskite nanostructures grown on differently oriented substrates are presented. A theoretical model of magnetoelectric coupling in multiferroic nanostructures that considers a microscopic mechanism of magnetization in single-domain magnetic nanorods is described. This model explains a discontinuous electromagnetic coupling, as observed experimentally, and predicts a hysteretic behavior of magnetization under external electric fields.


Sign in / Sign up

Export Citation Format

Share Document