Ground and Electronically Excited States of Main-Group-Metal-Doped B20 Double Rings

Author(s):  
Isuru R. Ariyarathna
Author(s):  
Tatyana S. Koptseva ◽  
Vladimir G. Sokolov ◽  
Sergey Yu. Ketkov ◽  
Elena A. Rychagova ◽  
Anton V. Cherkasov ◽  
...  

Author(s):  
Yafu Guan ◽  
Changjian Xie ◽  
David R. Yarkony ◽  
Hua Guo

Nonadiabatic dynamics, which goes beyond the Born-Oppenheimer approximation, has increasingly been shown to play an important role in chemical processes, particularly those involving electronically excited states. Understanding multistate dynamics requires...


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Samuel Tetteh ◽  
Albert Ofori

Abstract The M–Ccarbene bond in metal (M) complexes involving the imidazol-2-ylidene (Im) ligand has largely been described using the σ-donor only model with donation of σ electrons from the sp-hybridized orbital of the carbene carbon into vacant orbitals on the metal centre. Analyses of the M–Ccarbene bond in a series of group IA, IIA and IIIA main group metal complexes show that the M-Im interactions are mostly electrostatic with the M–Ccarbene bond distances greater than the sum of the respective covalent radii. Estimation of the binding energies of a series of metal hydride/fluoride/chloride imidazol-2-ylidene complexes revealed that the stability of the M–Ccarbene bond in these complexes is not always commensurate with the σ-only electrostatic model. Further natural bond orbital (NBO) analyses at the DFT/B3LYP level of theory revealed substantial covalency in the M–Ccarbene bond with minor delocalization of electron density from the lone pair electrons on the halide ligands into antibonding molecular orbitals on the Im ligand. Calculation of the thermodynamic stability of the M–Ccarbene bond showed that these interactions are mostly endothermic in the gas phase with reduced entropies giving an overall ΔG > 0.


1978 ◽  
Vol 21 (11) ◽  
pp. 1513-1514
Author(s):  
Yu. A. Tishchenko ◽  
L. V. Orlovskaya ◽  
V. I. Danilova

2013 ◽  
Vol 9 (S297) ◽  
pp. 344-348 ◽  
Author(s):  
R. C. Fortenberry

AbstractThe dipole-bound excited state of the methylene nitrile anion (CH2CN−) has been suggested as a candidate carrier for a diffuse interstellar band (DIB) at 803.8 nm. Its corresponding radical has been detected in the interstellar medium (ISM), making the existence for the anion possible. This work applies state-of-the-art ab initio methods such as coupled cluster theory to reproduce accurately the electronic excitations for CH2CN− and the similar methylene enolate anion, CH2CHO−. This same approach has been employed to indicate that 19 other anions may possess electronically excited states, five of which are valence in nature. Concurrently, in order to assist in the detection of these anions in the ISM, work has also been directed towards predicting vibrational frequencies and spectroscopic constants for these anions through the use of quartic force fields (QFFs). Theoretical rovibrational work on anions has thus far included studies of CH2CN−, C3H−, and is currently ongoing for similar systems.


Sign in / Sign up

Export Citation Format

Share Document