pH-Induced Regulation of Excitation Energy Transfer in the Cyanobacterial Photosystem I Tetramer

2020 ◽  
Vol 124 (10) ◽  
pp. 1949-1954 ◽  
Author(s):  
Ryo Nagao ◽  
Makio Yokono ◽  
Yoshifumi Ueno ◽  
Tian-Yi Jiang ◽  
Jian-Ren Shen ◽  
...  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Fusamichi Akita ◽  
Ryo Nagao ◽  
Koji Kato ◽  
Yoshiki Nakajima ◽  
Makio Yokono ◽  
...  

AbstractIron-stress induced protein A (IsiA) is a chlorophyll-binding membrane-spanning protein in photosynthetic prokaryote cyanobacteria, and is associated with photosystem I (PSI) trimer cores, but its structural and functional significance in light harvesting remains unclear. Here we report a 2.7-Å resolution cryo-electron microscopic structure of a supercomplex between PSI core trimer and IsiA from a thermophilic cyanobacterium Thermosynechococcus vulcanus. The structure showed that 18 IsiA subunits form a closed ring surrounding a PSI trimer core. Detailed arrangement of pigments within the supercomplex, as well as molecular interactions between PSI and IsiA and among IsiAs, were resolved. Time-resolved fluorescence spectra of the PSI–IsiA supercomplex showed clear excitation-energy transfer from IsiA to PSI, strongly indicating that IsiA functions as an energy donor, but not an energy quencher, in the supercomplex. These structural and spectroscopic findings provide important insights into the excitation-energy-transfer and subunit assembly mechanisms in the PSI–IsiA supercomplex.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Yuval Mazor ◽  
Anna Borovikova ◽  
Nathan Nelson

Most life forms on Earth are supported by solar energy harnessed by oxygenic photosynthesis. In eukaryotes, photosynthesis is achieved by large membrane-embedded super-complexes, containing reaction centers and connected antennae. Here, we report the structure of the higher plant PSI-LHCI super-complex determined at 2.8 Å resolution. The structure includes 16 subunits and more than 200 prosthetic groups, which are mostly light harvesting pigments. The complete structures of the four LhcA subunits of LHCI include 52 chlorophyll a and 9 chlorophyll b molecules, as well as 10 carotenoids and 4 lipids. The structure of PSI-LHCI includes detailed protein pigments and pigment–pigment interactions, essential for the mechanism of excitation energy transfer and its modulation in one of nature's most efficient photochemical machines.


2022 ◽  
Author(s):  
Koji Kato ◽  
Ryo Nagao ◽  
Yoshifumi Ueno ◽  
Makio Yokono ◽  
Takehiro Suzuki ◽  
...  

Photosystem I (PSI) contributes to light-conversion reactions; however, its oligomerization state is variable among photosynthetic organisms. Herein we present a 3.8-Å resolution cryo-electron microscopic structure of tetrameric PSI isolated from a glaucophyte alga Cyanophora paradoxa. The PSI tetramer is organized in a dimer of dimers form with a C2 symmetry. Different from cyanobacterial PSI tetramer, two of the four monomers are rotated around 90°, resulting in a totally different pattern of monomer-monomer interactions. Excitation-energy transfer among chlorophylls differs significantly between Cyanophora and cyanobacterial PSI tetramers. These structural and spectroscopic features reveal characteristic interactions and energy transfer in the Cyanophora PSI tetramer, thus offering an attractive idea for the changes of PSI from prokaryotes to eukaryotes.


2002 ◽  
Vol 106 (16) ◽  
pp. 4313-4317 ◽  
Author(s):  
Alexander N. Melkozernov ◽  
Volkmar H. R. Schmid ◽  
Su Lin ◽  
Harald Paulsen ◽  
Robert E. Blankenship

Sign in / Sign up

Export Citation Format

Share Document