Near-Quantitative Triplet State Population via Ultrafast Intersystem Crossing in Perbromoperylenediimide

2020 ◽  
Vol 124 (31) ◽  
pp. 6867-6874 ◽  
Author(s):  
Amalu Mohan ◽  
Ebin Sebastian ◽  
Mahesh Gudem ◽  
Mahesh Hariharan
1985 ◽  
Vol 18 (6) ◽  
pp. 1284-1286 ◽  
Author(s):  
James F. Pratte ◽  
Stephen E. Webber ◽  
F. C. DeSchryver

1968 ◽  
Vol 46 (14) ◽  
pp. 2353-2360 ◽  
Author(s):  
A. N. Strachan ◽  
D. E. Thornton

Ketene has been photolyzed at 3660 and 3130 Å both alone and in the presence of the inert gases C4F8 and SF6. The quantum yield of carbon monoxide has been determined at both wavelengths as a function of pressure and temperature. At 3660 Å the quantum yield decreases with increasing pressure but increases with increasing temperature. At 3130 Å the quantum yield with ketene alone remains 2.0 at both 37 and 100 °C at pressures up to 250 mm. At higher pressures of ketene or with added inert gas the quantum yield decreases with increasing pressure. The results are interpreted in terms of a mechanism in which intersystem crossing from the excited singlet state to the triplet state occurs at both wavelengths, and collisional deactivation of the excited singlet state by ketene is single stage at 3660 Å but multistage at 3130 Å.


1983 ◽  
Vol 38 (6) ◽  
pp. 698-700 ◽  
Author(s):  
H. Dreeskamp ◽  
A. Läufer ◽  
M. Zander

The fluorescence of perylene in fluid solution (λ0.0 = 440 nm) is quenched by silver ions in a dynamic process according to a Stern-Volmer kinetics (kq = 2 · 109 [1 • mol-1 · sec-1], in ethanol at 295 K). Simultaneously an unstructured long-wavelength emission (λmax ≈ 470 nm) appears which we assign to a perylene/Ag+ exciplex. A similar emission is observed when other polvcyclic aromatic compounds (PAC) are used, whose fluorescence as in the case of perylene is not easily quenched in an external heavy atom effect by iodopropane (kq ≦ 106). In these cases the excited PAC/Ag+ complex is long-lived enough to emit fluorescence since the intersystem crossing to the triplet system is slow due to the absence of an energetically favorable accepting triplet state


2020 ◽  
Vol 22 (11) ◽  
pp. 6145-6153
Author(s):  
Lekshmi R. S. ◽  
Gayathri B. Kurup ◽  
Sivaranjana Reddy Vennapusa

The intersystem crossing receiver triplet state lifetime dictates the efficiency of the triplet quantum yield in carbonylpyrenes.


2020 ◽  
Vol 56 (11) ◽  
pp. 1721-1724 ◽  
Author(s):  
Yuqi Hou ◽  
Qingyun Liu ◽  
Jianzhang Zhao

Heavy atom-free dyads showing a red light-absorbing and exceptionally long-lived triplet state based on a spin–orbital charge transfer intersystem crossing mechanism.


Sign in / Sign up

Export Citation Format

Share Document